Given
Car 1
m1 = 1300 kg
v1 = 20 m/s
m2 = 900 kg
v2 = -15 m/s
(Negative sign shows that direction of car 2 is opposite to car 1)
Procedure
As per the conservation of linear momentum, "The total momentum of the system before the collision must be equal to the total momentum after the collision". And this applies to the perfectly inelastic collision as well. Then the expression is,

Thus, we can conclude that the speed and direction of the cars after the impact is 5.68 m/s towards the first car.
Answer:
Thomson's atomic model was successful in explaining the overall neutrality of the atom. However, its propositions were not consistent with the results of later experiments. In 1906, J. J. Thomson was awarded the Nobel Prize in physics for his theories and experiments on electricity conduction by gases.
Summary. J.J. Thomson's experiments with cathode ray tubes showed that all atoms contain tiny negatively charged subatomic particles or electrons. Thomson proposed the plum pudding model of the atom, which had negatively-charged electrons embedded within a positively-charged "soup."
Oxygen bc plants go through photosynthesis which keeps producing more oxygen
holding it and slowly moving forward 2.0m
Answer:
(a) 32.5 kgm/s
(b) 32.5 Ns
(c) 10.8 N
Explanation:
The change in momentum can be calculated from the definition of linear momentum:

Then, the change in momentum of the body is of 32.5 kgm/s (a).
Now, from the impulse-momentum theorem, we know that the change in momentum of a body
is equal to the impulse
exerted to it. So, the impulse produced by the force equals 32.5 kgm/s (or 32.5 Ns) (b).
Finally, since we know the value of the impulse and the interval of time, we can easily solve for the magnitude of the force:

It means that the magnitude of the force is of 10.8N (c).