Answer:
Yes
Explanation:
If lamp A burnt out there would still be a wire above it that connects lamp B and C to the power source
Answer:
e. all of these
Explanation:
The fatigue strength is improved by then high alloy steels , high yield steels , high hardened steel , high ultimate steel .
Due to the formation of the improved materials in alloy steels will increase the fatigue strength . Similarly for a high yield steels and hardened steels these cycles to failure will improve .
Given: Mass of earth Me = 5.98 x 10²⁴ Kg
Radius of earth r = 6.37 x 10⁶ m
G = 6.67 x 10⁻¹¹ N.m²/Kg²
Required: Smallest possible period T = ?
Formula: F = ma; F = GMeMsat/r² Centripetal acceleration ac = V²/r
but V = 2πr/T
equate T from all equation.
F = ma
GMeMsat/r² = Msat4π²/rT²
GMe = 4π²r³/T²
T² = 4π²r³/GMe
T² = 39.48(6.37 x 10⁶ m)³/6.67 x 10⁻¹¹ N.m²/Kg²)(5.98 x 10²⁴ Kg)
T² = 1.02 x 10²² m³/3.99 x 10¹⁴ m³/s²
T² = 25,563,909.77 s²
T = 5,056.08 seconds or around 1.4 Hour
In technical terms, every coil of wire increases the "magnetic flux density" (strength) of your magnet.
So it's A (magnetic field increase)