1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
luda_lava [24]
3 years ago
10

How are trade winds affected by the coriolis effect

Physics
1 answer:
kotegsom [21]3 years ago
7 0
The Coriolis Effect, in combination with an area of high pressure, causes the prevailing winds—the trade winds.
You might be interested in
Two cars A and B, travel in a straight line. The distance of A from the starting point is given as a function of time by x????(?
Norma-Jean [14]

Answer:

a) They are in the same point

b) t = 0 s, t = 2.27 s, t = 5.73 s

c) t = 1 s, t = 4.33 s

d) t = 2.67 s

Explanation:

Given equations are:

x_{a}(t) = at+bt^2

x_{b}(t) = ct^2-dt^3

Constants are:

a = 2.60 m/s, b = 1.20 m/s^2, c= 2.80 m/s^2, d = 0.20 m/s^3

a) "Just after leaving the starting point" means that t = 0. So, if we look the equations, both x_a(t) and x_b(t) depend on t and don't have constant terms.

So both cars A and B are in the same point.

b) Firstly, they are in the same point in x = 0 at t = 0. But for generalized case, we must equalize equations and solve quadratic equation where roots will give us proper t value(s).

at+bt^2 = ct^2-dt^3

2.6t + 1.2t^2 = 2.8t^2 - 0.2t^3\\0.2t^2 - 1.6t + 2.6 = 0\\t^2 - 8t + 13 = 0

t_1 = 4 - \sqrt{3} = 2.27 s, t_1 = 4 + \sqrt{3} = 5.73 s

c) Since the distance isn't changing, the velocities are equal. To find velocities, we need to take the derivatives of both equations with respect to time and equalize them.

v_a(t) = \frac{d}{d(t)}x_a(t) = a + 2bt \\v_b(t) = \frac{d}{d(t)}x_b(t) = 2ct - 3dt^2\\a+2bt = 2ct - 3dt^2\\3dt^2+2(b-c)t+a = 0\\0.6t^2-3.2t+2.6 = 0

t_1 = 1 s, t_2 = 4.33 s

d) For same acceleration, we we need to take the derivatives of velocity equations with respect to time and equalize them.

a_a(t) = \frac{d}{d(t)}v_a(t) = 2b \\a_b(t) = \frac{d}{d(t)}v_b(t) = 2c - 6dt\\2b = 2c - 6dt\\3dt = c - b\\t = (c - b)/3d = (2.8 - 1.2)/(3*0.2) = 2.67 s

3 0
4 years ago
Read 2 more answers
An electron that has a velocity with x component 2.4 x 106 m/s and y component 3.6 x 106 m/s moves through a uniform magnetic fi
likoan [24]

Answer:

(a) 7.315 x 10^(-14) N

(b) - 7.315 x 10^(-14) N

Explanation:

As you referred at the final remark, the electron and proton undergo a magnetic force of same magnitude but opposite direction. Using the definition of magnetic force,  a cross product must be done. One technique is either calculate the magnitude of the velocity and magnetic field and multiplying by sin (90°), but it is necessary to assure both vectors are perpendicular between each other ( which is not the case) or do directly the cross product dealing with a determinant (which is the most convenient approach), thus,

(a) The electron has a velocity defined as:  \overrightarrow{v}=(2.4x10^{6} i + 3.6x10^{6} j) \frac{[m]}{[s]}\\\\

In respect to the magnetic field; \overrightarrow{B}=(0.027 i - 0.15 j) [T]

The magnetic force can be written as;

\overrightarrow{F} = q(\overrightarrow{v} x \overrightarrow{B})\\ \\\\\overrightarrow{F}= q \left[\begin{array}{ccc}i&j&k\\2.4x10^{6}&3.6x10^{6}&0\\0.027&-0.15&0\end{array}\right]

Bear in mind q =-1.6021x10^{-19} [C]  

thus,

\overrightarrow{F}= q \left[\begin{array}{ccc}i&j&k\\2.4x10^{6}&3.6x10^{6}&0\\0.027&-0.15&0\end{array}\right]\\\\\\\overrightarrow{F}= q(2.4x10^{6}* (-0.15)- (0.027*3.6x10^{6}))\\\\\\\overrightarrow{F}= -1.6021x10^{-19} [C](-457200) [T]\frac{m}{s}\\\\\overrightarrow{F}=(7.3152x10^{-14}) k [\frac{N*m/s}{C*m/s}]\\\\|F|= \sqrt{ (7.3152x10^{-14})^{2}[N]^2 *k^{2}}\\\\F=7.3152x10^{-14} [N]

Note: The cross product is operated as a determinant. Likewise, the product of the unit vector k is squared and that is operated as dot product whose value is equal to one, i.e, k^{2}=k\cdot k = 1

(b) Considering the proton charge has the same magnitude as electron does, but the sign is positive, thus

\overrightarrow{F}= q \left[\begin{array}{ccc}i&j&k\\2.4x10^{6}&3.6x10^{6}&0\\0.027&-0.15&0\end{array}\right]\\\\\\\overrightarrow{F}= q(2.4x10^{6}* (-0.15)- (0.027*3.6x10^{6}))\\\\\\\overrightarrow{F}= 1.6021x10^{-19} [C](-457200) [T]\frac{m}{s}\\\\\overrightarrow{F}=(-7.3152x10^{-14}) k [\frac{N*m/s}{C*m/s}]\\\\|F|= \sqrt{ (-7.3152x10^{-14})^{2}[N]^2 *k^{2}}\\\\F=-7.3152x10^{-14} [N]

Note: The cross product is operated as a determinant. Likewise, the product of the unit vector k is squared and that is operated as dot product whose value is equal to one, i.e, k^{2}=k\cdot k = 1

Final remarks: The cross product was performed in R3 due to the geometrical conditions of the problem.  

6 0
4 years ago
A ball is thrown straight upward and returns to the thrower’s hand after 1.8 s in the air. A second ball is thrown at an angle o
zysi [14]

Answer:

U = 9.1 m/s

Explanation:

from the question we are given the following

time (t) = 1.8 s

angle = 23 degrees

acceleration due to gravity (g) = 9.8 m/s^{2}

let us first calculate the initial velocity (u) which too the first ball to its maximum height from the equation below

v = u + 0.5at

  • The final velocity (v) is zero since the ball comes to rest
  • The time (t) it takes to get to the maximum height would  be half the time it is in the air, t = 0.5 x 1.8 = 0.9

therefore

0 = u - (0.5 x 9.8 x 0.9)

u = 7.9 m/s

for the second ball to get to the maximum height of the first ball, the vertical component of its initial velocity (U) must be the same as the initial velocity of the first ball. therefore

U sin 60 = 7.9

U = 7.9 ÷ sin 60

U = 9.1 m/s

5 0
3 years ago
Why concave lens is called diverging lens​
dangina [55]

When a parallel beam of light passes through a convex lens, the rays become farther from one another when the come out. This process of rays is called ''to diverge''. The concave lens makes rays of light diverge, so it is called diverging lens.

6 0
3 years ago
An automobile with a standard differential turns sharply to the left. The left driving wheel turns on a 20-m radius. Distance be
Inessa05 [86]

Explanation:

The given data is as follows.

    Inner wheel Radius = 20 m,

   Distance between left and right wheel = 1.5m,

Let us assume speed of drive shaft is N rpm.

Formula to calculate angular velocity is as follows.

    Angular velocity of automobile = w = \frac{V}{R}

where,   V = linear velocity of automobile m/min,

              R = turning radius from automobile center in meter

In the given case, angular velocity remains same for inner and outer wheel but there is change in linear velocity of inner wheel and outer wheel.

Now, we assume that

         u = linear velocity of inner wheel

and,   u' = linear velocity of outer wheel.

Formula for angular velocity of inner wheel w = ,

Formula for angular velocity of outer wheel w =

Now, for inner wheels

                   w =

                      = \frac{u}{(R - d)}

                  u = V \times \frac{(R - d)}{R}

                    = V \times (1 - \frac{d}{R})

If radius of wheel is r it will cover  distance in one min.

Since, velocity of wheel is u it will cover distance u in unit time(min)

Thus,             u = 2\pi rn = V \times (1 - \frac{d}{R})

Now, rotation per minute of inner wheel is calculated as follows.

         n = \frac{V}{2 \pi r \times (1 - \frac{d}{R})}

            = \frac{V}{2 \pi r \times (1 - \frac{0.75}{20})} (since 2d = 1.5m given, d = 0.75m),

             = \frac{V}{r} \times 0.1532

So, rotation per minute of outer wheel; n' =  

                   = \frac{V}{2 \pi r \times (1 + \frac{0.75}{20})}

                   = \frac{V}{r} \times 0.1651

5 0
4 years ago
Other questions:
  • A parachutist with a camera, both descending at a speed of 10.8 m/s, releases that camera at an altitude of 50 m. In this proble
    11·1 answer
  • a technician connects the red lead of a voltmeter to the b+ [output] terminal of an ac generator and the black lead to the batte
    9·1 answer
  • All of the following are a part of the scientific process EXCEPT _______.
    6·1 answer
  • The energy attributed to an object by virtue of its motion is known as _______________. potential energy mass-energy radiative e
    9·1 answer
  • 2.What is forensic paleontology?<br> 4.What are Forensic wood anatomists?
    6·1 answer
  • A student walks to school at a speed of 1.2 m/s. if the students mass is 53kg, what is the students kinetic energy
    15·1 answer
  • Which of the following statements is true? Like charges attract and unlike charges repel each other. Gravitational forces only e
    13·1 answer
  • Light travelling in one material enters another material in which it travels faster. The light wave will:
    11·1 answer
  • Help Help just answers what ever you think is right but hurry
    5·1 answer
  • Which has more momentum? *
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!