Answer:
t = 1.77 s
Explanation:
The equation of a traveling wave is
y = A sin [2π (x /λ -t /T)]
where A is the oscillation amplitude, λ the wavelength and T the period
the speed of the wave is constant and is given by
v = λ f
Where the frequency and period are related
f = 1 / T
we substitute
v = λ / T
let's develop the initial equation
y = A sin [(2π / λ) x - (2π / T) t +Ф]
where Ф is a phase constant given by the initial conditions
the equation given in the problem is
y = 5.26 sin (1.65 x - 4.64 t + 1.33)
if we compare the terms of the two equations
2π /λ = 1.65
λ = 2π / 1.65
λ = 3.81 m
2π / T = 4.64
T = 2π / 4.64
T = 1.35 s
we seek the speed of the wave
v = 3.81 / 1.35
v = 2.82 m / s
Since this speed is constant, we use the uniformly moving ratios
v = d / t
t = d / v
t = 5 / 2.82
t = 1.77 s
Answer:
Le calcul du courant se fait avec deux éléments : la tension et la valeur de la résistance. Courant (A) = tension (V) / résistance (Ohm) ce qui donne la formule I = U/R.
please mark me as brainalist
Answer:
The fall in temperature of the liquid is 8.6 +/- 0.1 ⁰C
Explanation:
Given;
initial temperature of the liquid, t₁ = 76.3 +/- 0.4⁰C
final temperature of the liquid, t₂ = 67.7 +/- 0.3⁰C
The change in temperature of the liquid is calculated as;
Δt = t₂ - t₁
Δt = (67.7 - 76.3) +/- (0.3 - 0.4)
Δt = (-8.6) +/- (-0.1)
Δt = 8.6 +/- 0.1 ⁰C
Therefore, the fall in temperature of the liquid is 8.6 +/- 0.1 ⁰C
Answer:
340.67 kgm²/s
Explanation:
R = Radius of merry-go-round = 1.9 m
I = Moment of inertia = 209 kgm²
= Initial angular velocity = 1.63 rad/s
m = Mass of person = 73 kg
v = Velocity = 4.8 m/s
Initial angular momentum is given by

The initial angular momentum of the merry-go-round is 340.67 kgm²/s
Answer:
C: Variation in the value of g as the pendulum bob moves along its arc.
Explanation:
The formula for period of a simple pendulum is given by;
T = 2π√(L/g)
Where;
L is length
g is acceleration due to gravity
Now, from this period equation, it is clear that the only thing that can affect the period of a simple pendulum are changes to its length and acceleration due to gravity.
Looking at the options, the only one that talks about either the length or gravity as being potential causes of the error is option C