Answer:
electeicity is caused by the movement of. from one atom to the next
Answer:
what are the options for me
Answer:
<em><u>Wave Winding</u></em>
Explanation:
Wave type of winding is mostly used for a circuit with a very high voltage and a comparable low magnitude of current. The winding can be Progressive (Right slot after first round turn) or Retrogressive (Left slot after first round turn).
Answer:
F = N*μ or F =m*g*μ
Explanation:
The friction force is defined as the product of the normal force by the corresponding friction factor.
When a body is in equilibrium over a horizontal plane its normal force value shall be equal to:
![N = m*g\\where:\\m=mass [kg]\\g=gravity [m/s^2]\\N= normal force [N]](https://tex.z-dn.net/?f=N%20%3D%20m%2Ag%5C%5Cwhere%3A%5C%5Cm%3Dmass%20%5Bkg%5D%5C%5Cg%3Dgravity%20%5Bm%2Fs%5E2%5D%5C%5CN%3D%20normal%20force%20%5BN%5D)
if we simplify this formula more for a balanced body on a horizontal plane, we will have.

(a) The maximum potential difference across the resistor is 339.41 V.
(b) The maximum current through the resistor is 0.23 A.
(c) The rms current through the resistor is 0.16 A.
(d) The average power dissipated by the resistor is 38.4 W.
<h3>Maximum potential difference</h3>
Vrms = 0.7071V₀
where;
V₀ = Vrms/0.7071
V₀ = 240/0.7071
V₀ = 339.41 V
<h3> rms current through the resistor </h3>
I(rms) = V(rms)/R
I(rms) = (240)/(1,540)
I(rms) = 0.16 A
<h3>maximum current through the resistor </h3>
I₀ = I(rms)/0.7071
I₀ = (0.16)/0.7071
I₀ = 0.23 A
<h3> Average power dissipated by the resistor</h3>
P = I(rms) x V(rms)
P = 0.16 x 240
P = 38.4 W
Learn more about maximum current here: brainly.com/question/14562756
#SPJ1