Answer:
r - 5 = 2c
r = 75
Step-by-step explanation:
To write an equation for the problem, we first need do declare the value of the number of apps cora has.
Let c = Cora's apps
r - 5 = 2c
r - 5 is used to indicate that Rita deleted 5 apps.
2c is used to represent the twice the number of apps Cora has.
Now you said that Cora had 35 apps.
Let's plug that into the equation.
r - 5 = 2c
r - 5 = 2(35)
r - 5 = 70
Now we transpose the -5 to the other side to leave r.
r = 70 + 5
r = 75
So if Cora has 35 apps, then Rita will have 75 apps.
<span> Direct-substituting x = -2 gives 0/0, so we know that by the factor theorem, both the numerator and denominator have a factor of x + 2. From there, we can cancel out the conflicting factors and apply the limit.
We can factor the numerator and denominator to get:
x^3 - x^2 - x + 10 = (x + 2)(x^2 - 3x + 5)
x^2 + 3x + 2 = (x + 2)(x + 1).
So we have:
lim (x-->-2) (x^3 - x^2 - x + 10)/(x^2 + 3x + 2)
= lim (x-->-2) [(x + 2)(x^2 - 3x + 5)]/[(x + 2)(x + 1)]
= lim (x-->-2) (x^2 - 3x + 5)/(x + 1), by canceling out x + 2
= [2^2 - 3(-2) + 5]/(-2 + 1)
= (4 + 6 + 5)/(-1)
= -15.
I hope this helps! </span>
270m, Since .5 is a third of the women’s height the 90m of the Eiffel Tower you multiply by 3 to get the original height
Velocity = distance / time
= 300m / 100s
= 3 m/s
Answer:
using the formula A = (a+b)/2 x ht., and substituting numbers given, the answer would be 15 cm.
Step-by-step explanation: