One advantage is that whatever resource it is, it will never run out and you wont have to worry about not having it. A second is that there is going to be enough for everyone to use however much they want without there having to be a limit on how much you use.
An electric engine turning a workshop sanding rotation at 1.00 × 10² rev/min is switched off. Take the wheel includes a regular negative angular acceleration of volume 2.00 rad/s². 5.25 moments long it takes the grinding rotation to control.
<h3>What is negative angular acceleration?</h3>
- A particle that has a negative angular velocity rotates counterclockwise.
- Negative angular acceleration () is a "push" that is hence counterclockwise.
- The body will speed up or slow down depending on whether and have the same sign (and eventually go in reverse).
- For instance, when an object rotating counterclockwise slows down, acceleration would be negative.
- If a rotating body's angular speed is seen to grow in a clockwise direction and decrease in a counterclockwise direction, it is given a negative sign.
- It is known that a change in the linear acceleration correlates to a change in the linear velocity.
Let t be the time taken to stop.
ω = 0 rad/s
Use the first equation of motion for rotational motion
ω = ωo + α t
0 = 10.5 - 2 x t
t = 5.25 second
To learn more about angular acceleration, refer to:
brainly.com/question/21278452
#SPJ4
Answer:
Explanation:
a )
The stored elastic energy of compressed spring
= 1 / 2 k X²
= .5 x 19.6 x (.20)²
= .392 J
b ) The stored potential energy will be converted into gravitational potential energy of the block earth system when the block will ascend along the incline . So change in the gravitational potential energy will be same as stored elastic potential energy of the spring that is .392 J .
c ) Let h be the distance along the incline which the block ascends.
vertical height attained ( H ) =h sin30
= .5 h
elastic potential energy = gravitational energy
.392 = mg H
.392 = 2 x 9.8 x .5 h
h = .04 m
4 cm .
=
Answer:
<h2>1567.09 N/m</h2>
Explanation:
Step one:
given data
mass m=5kg
compression x= 3.13cm to m= 0.0313m
<em>According to Hooke's law, provided the elastic limit of an elastic material is not exceeded the extension e is directly proportional to the applied force</em>
F=ke
where
k= spring constant in N/m
e= extension/compression in
Step two:
assume g= 9.81m/s^2
F=mg
F=5*9.81
F=49.05N
substitute in the expression F=ke
49.05=k*0.0313
k=49.05/0.0313
k=1567.09 N/m
<u>The force constant (in N/m) of the spring is 1567.09 N/m</u>