Answer:
Let's start by understanding what exactly a scientific question is. A scientific question is a question that may lead to a hypothesis and help us in answering (or figuring out) the reason for some observation. A good scientific question has certain characteristics. It should have some answers (real answers), should be testable.
Here's examples of a few:
Why is that a star?
or
What is that star made of?
Hope this can lead you to the answer you're looking for at least!!
Answer:
a) see attached, a = g sin θ
b)
c) v = √(2gL (1-cos θ))
Explanation:
In the attached we can see the forces on the sphere, which are the attention of the bar that is perpendicular to the movement and the weight of the sphere that is vertical at all times. To solve this problem, a reference system is created with one axis parallel to the bar and the other perpendicular to the rod, the weight of decomposing in this reference system and the linear acceleration is given by
Wₓ = m a
W sin θ = m a
a = g sin θ
b) The diagram is the same, the only thing that changes is the angle that is less
θ' = 9/2 θ
c) At this point the weight and the force of the bar are in the same line of action, so that at linear acceleration it is zero, even when the pendulum has velocity v, so it follows its path.
The easiest way to find linear speed is to use conservation of energy
Highest point
Em₀ = mg h = mg L (1-cos tea)
Lowest point
Emf = K = ½ m v²
Em₀ = Emf
g L (1-cos θ) = v² / 2
v = √(2gL (1-cos θ))
Answer:
1:2
Explanation:
It is given that,
Initial RMS AC voltage is 100 V and final RMS AC voltage is 200 V.
We need to find the ratio of the number of turns in the primary to the secondary for step up transformer.
For a transformer, 
So,

So, the ratio of the number of turns in the primary to the secondary is 1:2.
Answer:
A. 4.47 m/s
Explanation:
As the ball oscillates, it mechanical energy, aka the total kinetic and elastics energy stays the same. For the ball to be at maximum speed, its elastic energy i 0 and vice versa. When the ball is at rest, its kinetic energy is 0 and its elastic energy is at maximum at 50 cm, or 0.5 m
1500 g = 1.5 kg





