Incomplete contribution happens when there is a limited supply of air so only half is much oxygen adds to the carbon forming carbon monoxide
A.Force because your adding pressure to what you are pushing or pulling.
Explanation:
Defining law of definite proportions, it states that when two elements form more than one compound, the ratios of the masses of the second element which combine with a fixed mass of the first element will always be ratios of small whole numbers.
A. One of the oxides (Oxide 1) contains 63.2% of Mn.
Mass of the oxide = 100g
Mass of Mn = 63.2 g
Mass of O = 100 - 63.2
= 36.8 g
Ratio of Mn to O = 63.2/36.8
= 1.72
Another oxide (Oxide 2) contains 77.5% Mn.
Mass of oxide = 100 g
Mass of Mn = 77.5 g
Mass of O = 100 - 77.5
= 22.5 g
Ratio of Mn to O = 77.5/22.5
= 3.44
Therefore, the ratio of the masses of Mn and O in Oxide 1 and Oxide 2 is in the ratio 1.72 : 3.44, which is also 1 : 2. So the law of multiple proportions is obeyed.
B.
Oxide 1
Mass of Mn per 1 g of O = mass of Mn/mass of O
= 77.5/22.5
= 3.44 g/g of Oxygen.
Oxide 2
Mass of Mn per 1 g of O = mass of Mn/mass of O
= 77.5/22.5
= 3.44 g/g of Oxygen.
Answer:
Kp = 1.41 x 10⁻⁶
Explanation:
We have the chemical equation:
2 A(g) + 3 B(g)⇌ C(g)
In which A and B are the reactants and C is the product. We calculate first the change in the number of moles of gas (Δn or dn):
dn= (sum moles products - sum moles reactants)
= (moles C - (moles A + moles B))
= (1 - (2+3))
= 1 - 5
= -4
We have also the following data:
Kc = 63.2
T= 81∘C + 273 = 354 K
R = 0.082 L.atm/K.mol (it is a constant)
Thus, we introduce the data in the mathematical expression for the relation between Kp and Kc:
= (0.082 L.atm/K.mol x 354 K)⁻⁴ = 1.41 x 10⁻⁶