Answer:

Explanation:
Hola,
En este caso, usando la ecuación del gas ideal, podemos calcular facilmente la presión a partir de:

Por lo que despejando para la presión obtenemos:

Así, calculamos:

¡Saludos!
Answer:
The wavelength for the transition from n = 4 to n = 2 is<u> 486nm</u> and the name name given to the spectroscopic series belongs to <u>The Balmer series.</u>
Explanation
lets calculate -
Rydberg equation- 
where ,
is wavelength , R is Rydberg constant (
),
and
are the quantum numbers of the energy levels. (where
)
Now putting the given values in the equation,


Wavelength 
=
= 486nm
<u> Therefore , the wavelength is 486nm and it belongs to The Balmer series.</u>
Potassium outermost electron occupy "4s" orbital
Answer: Ti is the reducing agent because it changes from 0 to +4 oxidation state.
Explanation:
- Firstly, we need to identify the reducing agent and the oxidizing agent.
- The reducing agent: is the agent that has been oxidized via losing electrons.
- The oxidizing agent: is the agent that has been reduced via gaining electrons.
- Here, Ti losses 4 electrons and its oxidation state is changed from 0 to +4 and Cl₂ gains one electron and its oxidation state is changed from 0 to -1.
- So, Ti is the reducing agent because its oxidation state changes from 0 to +4.
- Cl₂ is the oxidizing agent because its oxidation state changes from 0 to -1.
- Thus, The right answer is Ti is the reducing agent because it changes from 0 to +4 oxidation state.