Using Kepler's 3rd law which is: T² = 4π²r³ / GM
Solved for r :
r = [GMT² / 4π²]⅓
Where G is the universal gravitational constant,M is the mass of the sun,T is the asteroid's period in seconds, andr is the radius of the orbit.
Change 5.00 years to seconds :
5.00years = 5.00years(365days/year)(24.0hours/day)(6... = 1.58 x 10^8s
The radius of the orbit then is computed:
r = [(6.67 x 10^-11N∙m²/kg²)(1.99 x 10^30kg)(1.58 x 10^8s)² / 4π²]⅓ = 4.38 x 10^11m
Answer:
more time to change the momentum of falling rocks
Explanation:
Momentum is related to "mass in motion." So, if an object is moving, then it has momentum as it has its mass in motion. The amount of momentum is dependent upon how much and how fast the object is moving.
If an object is moving slowly, it means that the object is losing momentum.
Nets used to catch falling boulders on the side of rocky hillside roadways are more effective than rigid fences because their breakage is reduced by more time to change the momentum of falling rocks.
The wavelength of the incident photon is
.
What is wavelength?
The wavelength, or the distance over which the shape of a periodic wave repeats, is the spatial period in physics. It is a property of both traveling waves and standing waves, as well as other spatial wave patterns. It is the distance between two successive corresponding locations of the same phase on the wave, such as two neighboring crests, troughs, or zero crossings. The Greek letter lambda is frequently used to denote wavelength. The term wavelength is also sometimes used to describe modulated waves, their sinusoidal envelopes, or waves created by the interference of several sinusoids.
The relationship between wavelength and frequency is inverse, assuming a sinusoidal wave flowing at a constant speed.
Calculations:
The energy loss Δλ=h/
(1-cos∅)
Conservation of momentum gives,



Wavelength(λ)=
=
Wavelength(λ)=
To learn more about wavelength , visit:
brainly.com/question/12924624
#SPJ4
Answer:
Approximately
, assuming that 
Explanation:
The weight of the elevator is:
.
Since the speed of the elevator is constant, the acceleration of this elevator would be
.
By Newton's Second Law of Motion, the net force on the elevator (proportional to acceleration) would also be
. All external forces on the elevator need to be balanced in every direction.
The only two vertical forces on the elevator are:
- the weight of the elevator (downward gravitational pull from the earth,) and
- the upward pull from the motor.
These two forces need to balance one another. Since the weight of the elevator is approximately
, the upward pull of the motor would be
. in magnitude.
The direction of this upward pull is the same as the direction of the motion of this elevator. Thus, the work that the motor did on the elevator would be positive:
.
Since the velocity of the elevator is constant, instantaneous power output of the motor would be equal to the average power of the motor:
.
Temperature & amount
Hope I helped! ( Smiles )