Answer:
Heat absorbed by water = 3985.26 j
Explanation:
Given data:
Mass of water = 75 g
Initial temperature = 20.0°C
Final temperature = 32.7°C
Specific heat of water = 4.184 j/g.°C
Heat absorbed by water = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 32.7°C - 20°C
ΔT = 12.7 °C
Q = 75 g ×4.184 j/g.°C ×12.7 °C
Q = 3985.26 j
Hi!
The best possible name for this molecule would be: 4 - ethyl - 1 - heptene or 4 - ethylhept - 1 - ene
We always name the molecule with respect to the longest chain (in a branched molecule), taking both atoms of carbon participating in the double bond into account too. In our case, this gives us a 7 Carbon chain - hept
ene - is the suffix that is indicative of the molecule being an alekene.
<em>So we know it is a branched heptene molecule</em>
We add the number where the double bond occurs either before ene, or before heptene as a rule.
<em>Note: We always start with the end of the chain from where the double bond is the closest, and number the carbons accordingly.</em>
The title and position of the branch always comes at the start. In our case the branch is a two carbon chain, and an alkane, so it would be an ethyl branch. This branch occurs at carbon number 4
Hence, the correct names would be:
<em>4 - ethyl - 1 - heptene</em> or <em>4 - ethylhept - 1 - ene</em>
Hope this helps!
2 Al + 6 HCl → 2 AlCl₃ + 3 H₂ (single displacement)
Ca + Br₂ → CaBr₂ (synthesis)
4 NH₃ + 5 O₂ → 4 NO + 6 H₂O (combustion)
2 NaCl → 2 Na + Cl₂ (decomposition)
FeS + 2 HCl → FeCl₂ + H₂S (double displacement)
single displacement - is a chemical reaction of the following type: A + BC → AC + B
double displacement - is a chemical reaction of the following type: AB + CD → AC + BD
synthesis - the chemical product is obtained by combining in a synthesis the constituent elements
combustion - usually a exothermic reaction of a particular compound with oxygen
decomposition - degradation of a compound in simpler elements
The mass of Ba(IO3)2 that can be dissolved in 500 ml of water at 25 degrees celcius is 2.82 g
<h3>What mass of Ba(IO3)2 can be dissolved in 500 ml of water at 25 degrees celcius?</h3>
The Ksp of Ba(IO3)2 = 1.57 × 10^-9
Molar mass of Ba(IO3)2 = 487 g/mol?
Dissociation of Ba(IO3)2 produces 3 moles of ions as follows:

![Ksp = [Ba^{2+}]*[IO_{3}^{-}]^{2}](https://tex.z-dn.net/?f=Ksp%20%3D%20%5BBa%5E%7B2%2B%7D%5D%2A%5BIO_%7B3%7D%5E%7B-%7D%5D%5E%7B2%7D)
![[Ba(IO_{3})_{2}] = \sqrt[3]{ksp} =\sqrt[3]{1.57 \times {10}^{ - 9} } \\ [Ba(IO_{3})_{2}] = 1.16 \times {10}^{-3} moldm^{-3}](https://tex.z-dn.net/?f=%5BBa%28IO_%7B3%7D%29_%7B2%7D%5D%20%3D%20%20%5Csqrt%5B3%5D%7Bksp%7D%20%3D%3C%2Fp%3E%3Cp%3E%5Csqrt%5B3%5D%7B1.57%20%5Ctimes%20%20%7B10%7D%5E%7B%20-%209%7D%20%7D%20%5C%5C%20%20%5BBa%28IO_%7B3%7D%29_%7B2%7D%5D%20%3D%201.16%20%5Ctimes%20%20%7B10%7D%5E%7B-3%7D%20moldm%5E%7B-3%7D)
moles of Ba(IO3)2 = 1.16 × 10^-3 × 0.5 = 0.58 × 10^-3 moles
mass of Ba(IO3)2 = 0.58 × 10^-3 moles × 487 = 2.82 g
Therefore, mass Ba(IO3)2 that can be dissolved in 500 ml of water at 25 degrees celcius is 2.82 g.
Learn more about mass and moles at: brainly.com/question/15374113
#SPJ12
When you get injured or hurt it affects the nervous system and let’s it react by the severity.