Describe the process by which Ag+ ions are precipitated out of solution. 4. In your testing, several precipitates are formed, and then dissolved as complexes.
1. The molar mass of Fe2(CO3)3 is 291.72 g/mol. This means that 45.6 g is equivalent to 0.156 mol. Dividing by the 0.167 L of water gives a solution of 0.936 M.
2. Multiplying (0.672 M)(0.025 L) = 0.0168 mol. The molar mass of Ni(OH)2 is 92.71 g/mol, so multiplying by 0.0168 mol = 1.56 grams. Therefore you would need to dissolved 1.56 g of Ni(OH)2 into 25 mL of water.
3. Fe2(CO3)3 + Ni(OH)2 --> Fe(OH)3 + NiCO3Balancing: Fe2(CO3)3 + 3Ni(OH)2 --> 2Fe(OH)3 + 3NiCO3The reaction quotient is:[Fe(OH)3]^2 * [NiCO3]^3 / [Fe2(CO3)3][Ni(OH)2]^3= (0.05)^2 * (1.45)^3 / (0.936)(0.672)^3= 0.0268Since this is < 1, it implies that the reactants are favored at equilibrium.
The circulatory system works with the digestive system. Once the food is digested, the circulatory systems absorb and uses the nutrients in the food. If the digestive system were to break down, the circulatory will not have the nutrients it needs to sufficiently run the body.
Answer: Oxalic Acid is and
Arrhenius Acid.
Explanation: According to
Arrhenius Theory of acid and base, "Acid is any substance which when dissolved in water produces H⁺ Ions".
Therefore, Oxalic Acid is a diprotic substance, which is capable of donating protons in water. This acidity of oxalic acid can be dedicated to the stability of
conjugate base, this stability comes from resonance of the negative charges on
Oxalate ion. Below reaction shows the dissociation of Oxalic Acid into Protons and Oxalate Ion.