Answer:I am so sorry but here are no questions, thanks for the points
Explanation:Have a nice day
(a) If a kitten weighs 99 grams at birth, it is at 5.72 percentile of the weight distribution.
(b) For a kitten to be at 90th percentile, the minimum weight is 146.45 g.
<h3>
Weight distribution of the kitten</h3>
In a normal distribution curve;
- 2 standard deviation (2d) below the mean (M), (M - 2d) is at 2%
- 1 standard deviation (d) below the mean (M), (M - d) is at 16 %
- 1 standard deviation (d) above the mean (M), (M + d) is at 84%
- 2 standard deviation (2d) above the mean (M), (M + 2d) is at 98%
M - 2d = 125 g - 2(15g) = 95 g
M - d = 125 g - 15 g = 110 g
95 g is at 2% and 110 g is at 16%
(16% - 2%) = 14%
(110 - 95) = 15 g
14% / 15g = 0.93%/g
From 95 g to 99 g:
99 g - 95 g = 4 g
4g x 0.93%/g = 3.72%
99 g will be at:
(2% + 3.72%) = 5.72%
Thus, if a kitten weighs 99 grams at birth, it is at 5.72 percentile of the weight distribution.
<h3>Weight of the kitten in the 90th percentile</h3>
M + d = 125 + 15 = 140 g (at 84%)
M + 2d = 125 + 2(15) = 155 g ( at 98%)
155 g - 140 g = 15 g
14% / 15g = 0.93%/g
84% + x(0.93%/g) = 90%
84 + 0.93x = 90
0.93x = 6
x = 6.45 g
weight of a kitten in 90th percentile = 140 g + 6.45 g = 146.45 g
Thus, for a kitten to be at 90th percentile, the approximate weight is 146.45 g
Learn more about standard deviation here: brainly.com/question/475676
#SPJ1
Answer:
░░░░░▐▀█▀▌░░░░▀█▄░░░
░░░░░▐█▄█▌░░░░░░▀█▄░░
░░░░░░▀▄▀░░░▄▄▄▄▄▀▀░░
░░░░▄▄▄██▀▀▀▀░░░░░░░
░░░█▀▄▄▄█░▀▀░░
░░░▌░▄▄▄▐▌▀▀▀░░ This is Bob
▄░▐░░░▄▄░█░▀▀ ░░
▀█▌░░░▄░▀█▀░▀ ░░ Copy And Paste Him onto all of ur brainly answers
░░░░░░░▄▄▐▌▄▄░░░ So, He Can Take
░░░░░░░▀███▀█░▄░░ Over brainly
░░░░░░▐▌▀▄▀▄▀▐▄░░
░░░░░░▐▀░░░░░░▐▌░░
░░░░░░█░░░░░░░░█
Explanation:
Answer:
option C
option A
Explanation:
Enthalpy gained by air= 1023-290
= 733 kJ/kg
Rate of energy gain= mass flow rate × Enthalpy gained by air
= 0.1 × 733
= 73.3 kJ/s
rate of heat transfer between compressor and air= 77kW
Heat loss by air to surroundings= 77-73.3
=3.7kW
Enthalpy lost by steam in turbine= 1407.6-1236.4
= 171.2 Btu/lb
Rate of energy transfer to turbine= Enthalpy lost by steam× mass flow rate
= 171.2×5
= 856 Btu/s
Net rate of energy transfer to turbine=rate of Energy transfer to turbine- rate of heat transfer to turbine
= 856-40
= 816 Btu/s
Answer:
C. It is a continually growing field, and individuals trained in it should not have a problem finding employment.
Explanation: