Answer:
(A) Because the angle of twist of a material is often used to predict its shear toughness
Explanation:
In engineering, torsion is the solicitation that occurs when a moment is applied on the longitudinal axis of a construction element or mechanical prism, such as axes or, in general, elements where one dimension predominates over the other two, although it is possible to find it in diverse situations.
The torsion is characterized geometrically because any curve parallel to the axis of the piece is no longer contained in the plane initially formed by the two curves. Instead, a curve parallel to the axis is twisted around it.
The general study of torsion is complicated because under that type of solicitation the cross section of a piece in general is characterized by two phenomena:
1- Tangential tensions appear parallel to the cross section.
2- When the previous tensions are not properly distributed, which always happens unless the section has circular symmetry, sectional warps appear that make the deformed cross sections not flat.
Answer: Laplace equation provides a linear solution and helps in obtaining other solutions by being added to various solution of a particular equation as well.
Inviscid , incompressible and irrotational field have and basic solution ans so they can be governed by the Laplace equation to obtain a interesting and non-common solution .The analysis of such solution in a flow of Laplace equation is termed as potential flow.
Answer:
Benefits that last a lifetime. The Army offers you money for education, comprehensive health care, generous vacation time, family services and support groups, special pay and cash allowances to cover the cost of living.
Explanation:
def checklist(a_list, a_value):// def //used to name a function, the //arguments being passed into the //functions are a_list and a_value
if a_value in list://if statement to
//check if it's in the list or not
print("")//print statement to do
//nothing
else://else statement for if the
//a_value is in a_list
a_list.append(a_value)//this adds
//the value to the list
Answer:
diameter of the sprue at the bottom is 1.603 cm
Explanation:
Given data;
Flow rate, Q = 400 cm³/s
cross section of sprue: Round
Diameter of sprue at the top
= 3.4 cm
Height of sprue, h = 20 cm = 0.2 m
acceleration due to gravity g = 9.81 m/s²
Calculate the velocity at the sprue base
= √2gh
we substitute
= √(2 × 9.81 m/s² × 0.2 m )
= 1.98091 m/s
= 198.091 cm/s
diameter of the sprue at the bottom will be;
Q = AV = (π
/4) × 
= √(4Q/π
)
we substitute our values into the equation;
= √(4(400 cm³/s) / (π×198.091 cm/s))
= 1.603 cm
Therefore, diameter of the sprue at the bottom is 1.603 cm