Answer:
Explained below
Explanation:
The isohyetal method is one used in estimating Rainfall whereby the mean precipitation across an area is gotten by drawing lines that have equal precipitation. This is done by the use of topographic and other data to yield reliable estimates.
Whereas, the arithmetic method is used to calculate true precipitation by the way of getting the arithmetic mean of all the points or arial measurements that will be considered in the analysis.
Answer:
The pressure difference across hatch of the submarine is 3217.68 kpa.
Explanation:
Gauge pressure is the pressure above the atmospheric pressure. If we consider gauge pressure for finding pressure differential then no need to consider atmospheric pressure as they will cancel out. According to hydrostatic law, pressure varies in the z direction only.
Given:
Height of the hatch is 320 m
Surface gravity of the sea water is 1.025.
Density of water 1000 kg/m³.
Calculation:
Step1
Density of sea water is calculated as follows:

Here, density of sea water is
, surface gravity is S.G and density of water is
.
Substitute all the values in the above equation as follows:


kg/m³.
Step2
Difference in pressure is calculated as follows:


pa.
Or

kpa.
Thus, the pressure difference across hatch of the submarine is 3217.68 kpa.
Answer:
it is not possible to place the wires in the condui
Explanation:
given data
total area = 2.04 square inches
wires total area = 0.93 square inches
maximum fill conduit = 40%
to find out
Can it is possible place wire in conduit conduit
solution
we know maximum fill is 40%
so here first we get total area of conduit that will be
total area of conduit = 40% × 2.04
total area of conduit = 0.816 square inches
but this area is less than required area of wire that is 0.93 square inches
so we can say it is not possible to place the wires in the conduit
Answer:
938.7 milliseconds
Explanation:
Since the transmission rate is in bits, we will need to convert the packet size to Bits.
1 bytes = 8 bits
1 MiB = 2^20 bytes = 8 × 2^20 bits
5 MiB = 5 × 8 × 2^20 bits.
The formula for queueing delay of <em>n-th</em> packet is : (n - 1) × L/R
where L : packet size = 5 × 8 × 2^20 bits, n: packet number = 48 and R : transmission rate = 2.1 Gbps = 2.1 × 10^9 bits per second.
Therefore queueing delay for 48th packet = ( (48-1) ×5 × 8 × 2^20)/2.1 × 10^9
queueing delay for 48th packet = (47 ×40× 2^20)/2.1 × 10^9
queueing delay for 48th packet = 0.938725181 seconds
queueing delay for 48th packet = 938.725181 milliseconds = 938.7 milliseconds
Answer:
D
Explanation: She hopes to be able to make this, however she hasn't yet...therefore she is thinking of a concept and it's development