1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pishuonlain [190]
4 years ago
14

A block of wood is floating in water; it is depressed slightly and then released to oscillate up and down. Assume that the top a

nd bottom of the block are parallel planes which remain horizontal during the oscillations and that the sides of the block are vertical. Show that the period of the motion (neglecting friction) is 2π ph/g, where h is the vertical height of the part of the block under water when it is floating at rest. Hint: Recall that the buoyant force is equal to the weight of displaced water.
Physics
1 answer:
Marysya12 [62]4 years ago
4 0

Explanation:

Equilibrium position in y direction:

W = Fb (Weight of the block is equal to buoyant force)

m*g = V*p*g

V under water = A*h

hence,

m = A*h*p

Using Newton 2nd Law

-m*\frac{d^2y}{dt^2} = Fb - W\\\\-m*\frac{d^2y}{dt^2} = p*g*(h+y)*A - A*h*p*g\\\\-A*h*p*\frac{d^2y}{dt^2} = y *p*A*g\\\\\frac{d^2y}{dt^2} + \frac{g}{h} * y =0

Hence, T time period

T = 2*pi*sqrt ( h / g )

You might be interested in
Kathy 82 kg performer standing on a diving board at the carnival dive straight down into a small pool of water. Just before stri
mixas84 [53]

Solution :

Given weight of Kathy = 82 kg

Her speed before striking the water, $V_o $ = 5.50 m/s

Her speed after entering the water, $V_f$= 1.1 m/s

Time = 1.65 s

Using equation of impulse,

$dP = F \times  dT$

Here, F =  the force ,

       dT =  time interval over which the force is applied for

            = 1.65 s

       dP  = change in momentum

dP = m x dV

    $= m \times [V_f - V_o] $

    = 82 x (1.1 - 5.5)

    = -360 kg

∴ the net force acting will be

$F=\frac{dP}{dT}$

$F=\frac{-360}{1.65}$

  = 218 N

8 0
3 years ago
You stand on a merry-go-round which is spinning at f = 0:25 revolutions per second. You are R = 200 cm from the center. (a) Find
ivanzaharov [21]

Answer:

(a) ω = 1.57 rad/s

(b) ac = 4.92 m/s²

(c) μs = 0.5

Explanation:

(a)

The angular speed of the merry go-round can be found as follows:

ω = 2πf

where,

ω = angular speed = ?

f = frequency = 0.25 rev/s

Therefore,

ω = (2π)(0.25 rev/s)

<u>ω = 1.57 rad/s </u>

(b)

The centripetal acceleration can be found as:

ac = v²/R

but,

v = Rω

Therefore,

ac = (Rω)²/R

ac = Rω²

therefore,

ac = (2 m)(1.57 rad/s)²

<u>ac = 4.92 m/s² </u>

(c)

In order to avoid slipping the centripetal force must not exceed the frictional force between shoes and floor:

Centripetal Force = Frictional Force

m*ac = μs*R = μs*W

m*ac = μs*mg

ac = μs*g

μs = ac/g

μs = (4.92 m/s²)/(9.8 m/s²)

<u>μs = 0.5</u>

7 0
3 years ago
6. The image to the right shows a moment of inertia
Trava [24]

The moment of inertia is the rotational analog of mass, and it is given by

the  product of mass and the square of the distance from the axis.

  • The moment of inertia changes as the position of the weight is changed, which indicates that; statement is incorrect

Reasons:

The weight on each arm that have adjustable positions can be considered as point masses.

The moment of inertia of a point mass is <em>I</em> = m·r²

Where;

m = The mass of the weight

r = The distance (position) from the center to which the weight is adjusted

Therefore;

The moment of inertia, <em>I </em>∝ r²

Which gives;

Doubling the distance from the center of rotation, increases the moment of inertia by factor of 4.

Therefore, the statement contradicts the relationship between the radius of rotation and moment of inertia.

Learn more about moment of inertia here:

brainly.com/question/4454769

7 0
2 years ago
This is the last question
koban [17]

Answer:

It's C

Explanation:

3 0
3 years ago
The height of a projectile t seconds after it is launched straight up in the air is given by f (t )equals negative 16 t squared
velikii [3]

Answer:

\displaystyle a(5)=-32

Explanation:

<u>Instant Acceleration</u>

The kinetic magnitudes are usually related as scalar or vector equations. By doing so, we are assuming the acceleration is constant over time. But when the acceleration is variable, the relations are in the form of calculus equations, specifically using derivatives and/or integrals.

Let f(t) be the distance traveled by an object as a function of the time t. The instant speed v(t) is defined as:

\displaystyle v(t)=\frac{df}{dt}

And the acceleration is

\displaystyle a(t)=\frac{dv}{dt}

Or equivalently

\displaystyle a(t)=\frac{d^2f}{d^2t}

The given height of a projectile is

f(t)=-16t^2 +238t+3

Let's compute the speed

\displaystyle v(t)=-32t+238

And the acceleration

\displaystyle a(t)=-32

It's a constant value regardless of the time t, thus

\boxed{\displaystyle a(5)=-32}

3 0
3 years ago
Other questions:
  • A charge of 100 elementary charges is equivalent to (1) 1.60 times 10^-21 C (2) 1.60 times 10^-17 C (3) 6.25 times 10^16 C (4) 6
    9·1 answer
  • Si m1 es 6kg y m2 es 14kg y la masa de la polea es despreciable ¿Cual es la aceleración que adquiere el sistema?
    9·1 answer
  • Two balls are kicked with the same initial speeds. Ball A was kicked at the angle 20° above horizontal and ball B was kicked at
    15·1 answer
  • Which of the following is not considered a natural science?
    15·2 answers
  • When a car accelerates from a standing start, the crash test dummy appears to be pressed backward into the seat cushion. Which o
    12·1 answer
  • As an apple falls from a tree, which types of energy are changing?
    9·1 answer
  • Science requires theories that can be tested by research. true false
    13·1 answer
  • Under some circumstances, a star can collapse into an extremely dense object made mostly of neutrons and called a neutron star.
    8·1 answer
  • If you push on a heavy box that is at rest, you must exert some force to start its motion. 5. however, once the box is in motion
    10·1 answer
  • What is the rotational inertia of an object that rolls without slipping down a 2.00-m-high incline starting from rest, and has a
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!