Answer:
The stuntman will not make it
Explanation:
At the bottom of the swing, the equation of the forces acting on the stuntman is:

where:
T is the tension in the rope (upward)
mg is the weight of the man (downward), where
m = 82.5 kg is his mass
is the acceleration due to gravity
is the centripetal force, where
v = 8.65 m/s is the speed of the man
r = 12.0 m is the radius of the circule (the length of the rope)
Solving for T, we find the tension in the rope:

Since the rope's breaking strength is 1000 N, the stuntman will not make it.
Answer:N=0
Explanation:
Given


both blocks experiencing free fall so net weight of block during free fall is zero thus there is no normal reaction between them.
N=0
Answer:
The angle above the horizontal at which the pitcher throws the ball determines the distance the ball travels before returning to the height at which it was thrown
Explanation:
The baseball is thrown as a projectile and the range, 'R', of the baseball which is the distance the baseball travels before the height above the ground returns to the initial height is given given as follows;

Where;
R = The range of the baseball = The horizontal distance away from the pitcher the ball reaches
u = The initial velocity with which the baseball was thrown
θ = The angle above horizontal a baseball pitcher throws the ball
g = The acceleration due to gravity ≈ 9.81 m/s²
From the the equation, when θ = 0, sin(θ) = sin(0) = 0 and the ball does not cover any horizontal distance before going lower than the height at which it was thrown, therefore, for the ball to travel further, the angle of launch, θ has to be larger than 0.