Answer:
9.28moles
Explanation:
Given parameters:
volume = 11.1L
pressure = 204atm
temperature = 24°C = 24 + 273 = 297K
Unknown:
Number of moles of air in the cylinder = ?
Solution:
To solve this problem, we apply the ideal gas equation;
PV = nRT
P is the pressure
V is the volume
n is the number of moles
R is the gas constant = 0.082atmdm³mol⁻¹K⁻¹
T is the temperature
Now insert the parameters and find n;
204 x 11.1 = n x 0.082 x 297
226.4 = 24.4n
n = 9.28moles
Multiply 9.0g/cm3 by 0.31g = 2.79cm3
Answer: Option A. 0.820g/mL
Explanation:
Mass = 12.3 g
Volume = 15mL
Density = Mass /volume
Density = 12.3/15 = 0.82g/mL
C. A compound !hope this helps!
[H_{3}O^{+}] = 0.00770 M
The equilibrium equation representing the dissociation of 

Given [H_{3}O^{+}] = 0.00770 M
Let the initial concentration of acid be x and change y
So y =
=
= 0.00770 M



0.00257 x - 0.00001979 = 0.00005929
x = 0.031 M
Therefore, initial concentration of the weak acid is <u>0.031 M</u>