Answer: Hydrogen that is not used in balloons because hydrogen burns very easily.
pls mark brainliest
<h2><u>Answer:</u></h2>
Bernoulli's Theorem in a general sense relates the weight, speed, and rise in a moving fluid (liquid or gas), the compressibility and consistency (internal grinding) of which are insignificant and the flood of which is predictable, or laminar.
(1): We can discover the speed of Efflux of a fluid.
This is given by v= sqrt (2gh), where the fluid is turning out from an opening in a vessel at profundity h from free fluid surface. This condition is known as Torricelli's hypothesis.
(2): Vena Contracta: The fluid stream from gap contracts at a separation minimal outside the opening to a neck, called Vena Contracta.
The territory of cross-segment of a fly is littler than a zone of opening. From this reality, we can discover the coefficient of withdrawal.
(3) : Bernoulli's standard is utilized in the development of Venturimeter, an instrument for estimation of measure of a stream of a fluid through a pipe.
The value of "d" is 80°
Explanation:
Cyclic quadrilaterals are the special group of quadrilaterals with all its base lying on the circumference of the circle. In other words, a quadrilateral inscribed in a circle is called a cyclic quadrilateral.
Cyclic quadrilateral are characterised by some special features such as
- Sum of opposite angles of a cyclic quadrilateral is always a supplementary angle.
- If one of the sides of a cyclic quadrilateral is produced, then the exterior angle so formed is always double of the corresponding interior angle.
Using the property 1
We find that since the quadrilateral is cyclic, opposite pairs must be supplementary
100°
+∠D must be equal to 180°
D=180°
-100°
=80°
<span>The metal that would more easily lose an electron would be potassium. It is more reactive than sodium. Also, looking on the periodic table, </span><span>from top to bottom for groups 1 and 2, reactivity increases. So, it should be potassium. Hope this answers the question. Have a nice day.</span>
Nuclear power plants heat water to produce steam. The steam is used to spin large turbines that generate electricity. ... In nuclear fission, atoms are split apart to form smaller atoms, releasing energy. Fission takes place inside the reactor of a nuclear power plant.