The answer is going be desert.
This question is not complete.
The complete question is as follows:
One problem for humans living in outer space is that they are apparently weightless. One way around this problem is to design a space station that spins about its center at a constant rate. This creates “artificial gravity” at the outside rim of the station. (a) If the diameter of the space station is 800 m, how many revolutions per minute are needed for the “artificial gravity” acceleration to be 9.80m/s2?
Explanation:
a. Using the expression;
T = 2π√R/g
where R = radius of the space = diameter/2
R = 800/2 = 400m
g= acceleration due to gravity = 9.8m/s^2
1/T = number of revolutions per second
T = 2π√R/g
T = 2 x 3.14 x √400/9.8
T = 6.28 x 6.39 = 40.13
1/T = 1/40.13 = 0.025 x 60 = 1.5 revolution/minute
Answer:
t = 0.029s
Explanation:
In order to calculate the interaction time at the moment of catching the ball, you take into account that the force exerted on an object is also given by the change, on time, of its linear momentum:
(1)
m: mass of the water balloon = 1.20kg
Δv: change in the speed of the balloon = v2 - v1
v2: final speed = 0m/s (the balloon stops in my hands)
v1: initial speed = 13.0m/s
Δt: interaction time = ?
The water balloon brakes if the force is more than 530N. You solve the equation (1) for Δt and replace the values of the other parameters:

The interaction time to avoid that the water balloon breaks is 0.029s