1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gala2k [10]
3 years ago
11

The distance from earth to teh sun usb approxximately 93 million miles. a scientist would write that number as

Physics
1 answer:
erastova [34]3 years ago
6 0

A scientist would write that number as 1.49 x 10⁸ kilometers .

(Or, if the scientist is in France or the UK, he might write it as  1.49 x 10⁸ kilometres .)

You might be interested in
A bug is sitting on the edge of a rotating disk. At what angular velocity will the bug slide off the disk if its radius is 0.241
Ivahew [28]

Answer:

ω = 3.61 rad/sec

Explanation:

Firstly, we should know that the bug will not slip if friction can provide sufficient opposing force.

μmg = mv^2/r = mω^2r

Thus;

μg = ω^2r

ω^2 = μg/r

ω = √(μg/r)

ω = √(0.321 * 9.8)/0.241

ω = √(13.05)

= 3.61 rad/sec

3 0
3 years ago
Light is incident on an air-water interface at an angle of 30 degree to the normal. What angle does the refracted ray make with
Vikentia [17]

Answer:

22 degree

Explanation:

Angle of incidence, i = 30 degree

the refractive index of water with respect to air is 4/3.

As the ray of light travels from rarer medium to denser medium, that mean air to water, the refraction takes place.

According to Snell's law,

Refractive index of water with respect to air = Sin i / Sin r

Where, r be the angle of refraction

4 / 3 = Sin 30 / Sin r

0.75 = 2 Sin r

Sin r = 0.375

r = 22 degree

Thus, the angle of refraction is 22 degree.

6 0
3 years ago
A 4-kg toy car with a speed of 5 m/s collides head-on with a stationary 1-kg car. After the collision, the cars are locked toget
mihalych1998 [28]

Kinetic energy lost in collision is 10 J.

<u>Explanation:</u>

Given,

Mass, m_{1} = 4 kg

Speed, v_{1} = 5 m/s

m_{2} = 1 kg

v_{2} = 0

Speed after collision = 4 m/s

Kinetic energy lost, K×E = ?

During collision, momentum is conserved.

Before collision, the kinetic energy is

\frac{1}{2} m1 (v1)^2 + \frac{1}{2} m2(v2)^2

By plugging in the values we get,

KE = \frac{1}{2} * 4 * (5)^2 + \frac{1}{2} * 1 * (0)^2\\\\KE = \frac{1}{2} * 4 * 25 + 0\\\\

K×E = 50 J

Therefore, kinetic energy before collision is 50 J

Kinetic energy after collision:

KE = \frac{1}{2} (4 + 1) * (4)^2 + KE(lost)

KE = 40J + KE(lost)

Since,

Initial Kinetic energy = Final kinetic energy

50 J = 40 J + K×E(lost)

K×E(lost) = 50 J - 40 J

K×E(lost) = 10 J

Therefore, kinetic energy lost in collision is 10 J.

4 0
3 years ago
A projectile is launched at an angle of 36.7 degrees above the horizontal with an initial speed of 175 m/s and lands at the same
Softa [21]

Answer:

a) The maximum height reached by the projectile is 558 m.

b) The projectile was 21.3 s in the air.

Explanation:

The position and velocity of the projectile at any time "t" is given by the following vectors:

r = (x0 + v0 · t · cos α, y0 + v0 · t · sin α + 1/2 · g · t²)

v = (v0 · cos α, v0 · sin α + g · t)

Where:

r = position vector at time "t"

x0 = initial horizontal position

v0 = initial velocity

t = time

α = launching angle

y0 = initial vertical position

g = acceleration due to gravity (-9.80 m/s² considering the upward direction as positive).

v = velocity vector at time t

a) Notice in the figure that at maximum height the velocity vector is horizontal. That means that the y-component of the velocity (vy) at that time is 0. Using this, we can find the time at which the projectile is at maximum height:

vy = v0 · sin α + g · t

0 = 175 m/s · sin 36.7° - 9.80 m/s² · t

-  175 m/s · sin 36.7° /  - 9.80 m/s² = t

t = 10.7 s

Now, we have to find the magnitude of the y-component of the vector position at that time to obtain the maximum height (In the figure, the vector position at t = 10.7 s is r1 and its y-component is r1y).

Notice in the figure that the frame of reference is located at the launching point, so that y0 = 0.

y = y0 + v0 · t · sin α + 1/2 · g · t²

y = 175 m/s · 10.7 s · sin 36.7° - 1/2 · 9.8 m/s² · (10.7 s)²

y = 558 m

The maximum height reached by the projectile is 558 m

b) Since the motion of the projectile is parabolic and the acceleration is the same during all the trajectory, the time of flight will be twice the time it takes the projectile to reach the maximum height. Then, the time of flight of the projectile will be (2 · 10.7 s) 21.4 s. However, let´s calculate it using the equation for the position of the projectile.

We know that at final time the y-component of the vector position (r final in the figure) is 0 (because the vector is horizontal, see figure). Then:

y = y0 + v0 · t · sin α + 1/2 · g · t²

0 = 175 m/s · t · sin 36.7° - 1/2 · 9.8 m/s² · t²

0 = t (175 m/s ·  sin 36.7 - 1/2 · 9.8 m/s² · t)

0 = 175 m/s ·  sin 36.7 - 1/2 · 9.8 m/s² · t

-  175 m/s ·  sin 36.7 / -(1/2 · 9.8 m/s²) = t

t = 21.3 s

The projectile was 21.3 s in the air.

7 0
3 years ago
A 50.0-g object connected to a spring with a force constant of 35.0 n/m oscillates with an amplitude of 4.00 cm on a frictionles
Dimas [21]
A) The total energy of the system is sum of kinetic energy and elastic potential energy:
E=K+U= \frac{1}{2}mv^2 +  \frac{1}{2}kx^2
where
m is the mass
v is the speed
k is the spring constant
x is the elongation/compression of the spring

The total energy is conserved, so we can calculate its value at any point of the motion. If we take the point of maximum displacement:
x=A=4.00 cm = 0.04 m
then the velocity of the system is zero, so the total energy is just potential energy, and it is equal to
E=U= \frac{1}{2}kA^2 =  \frac{1}{2}(35.0 N/m)(0.04 m)^2=0.028 J

b) When the position of the object is 
x=1.00 cm = 0.01 m
the potential energy of the system is
U= \frac{1}{2}kx^2 =  \frac{1}{2}(35.0 N/m)(0.01 m)^2 = 1.75 \cdot 10^{-3} J
and so the kinetic energy is
K=E-U=0.028 J - 1.75 \cdot 10^{-3}J =0.026 J
since the mass is m=50.0 g=0.05 kg, and the kinetic energy is given by
K= \frac{1}{2}mv^2
we can re-arrange the formula to find the speed of the object:
v= \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 0.026 J}{0.05 kg} }=1.02 m/s

c) The potential energy when the object is at 
x=3.00 cm=0.03 m
is
U= \frac{1}{2}kx^2 =  \frac{1}{2}(35.0 N/m)(0.03 m)^2 =0.016 J
Therefore the kinetic energy is
K=E-U=0.028 J-0.016 J = 0.012 J

d) We already found the potential energy at point c, and it is given by
U= \frac{1}{2}kx^2 = \frac{1}{2}(35.0 N/m)(0.03 m)^2 =0.016 J
5 0
3 years ago
Other questions:
  • Doug is driving a golf ball off the tee. His downswing takes 0.50sec from the top of the swing until ball impact. At the top of
    13·1 answer
  • If the distance between the bounces were 1.95 m instead of 1.30 m, but the height remained at 1.30 m, which of your answers to P
    5·1 answer
  • Density is a physical property that relates the mass of a substance to its volume. A. Calculate the density, in g/mL , of a liqu
    7·2 answers
  • A circuit was set up as shown in the diagram . The tgree resistors are identical
    10·1 answer
  • Which of the following statements does not represent a benefit of peer relationships? A. Jason and Sean argued over whose turn i
    9·2 answers
  • Four identical metallic spheres with charges of 2.2 µC, 4.2 µC, −7.4 µC, and −6.8 µC are placed on a piece of paper. The paper i
    13·1 answer
  • What is it called when something doesn’t flow easy
    8·1 answer
  • Acceleration is defined as the rate of change for which of the following?
    14·2 answers
  • What is the equation of the line that is perpendicular to y= -4x +5 and passes through the point (4,-3)?
    5·1 answer
  • Please solve no.g <br>Anyone!???​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!