Answer:
0.025 g C6H12O6
Explanation:
ppm = (g solute/ g solution)* 10^6
g solute= (ppm * g solution)/ 10^6
g solute = (250 ppm * 100 g)/10^6
g solute=0.025 g C6H12O6
The three factors determine the chemical properties of an element:
<span><span>The number and arrangement of electrons in an atom
</span><span>The number of valence electrons
</span><span>The number and arrangement of electrons</span></span>
Answer:It would be orange
Explanation:I hope this helps
The hydrocarbon is used in excess.
<h3><u>Explanation</u>:</h3>
The bromination of an arene is not simple as bromination of an alkane. This is because the carbocation or free radicle formation in benzene is a very energy consuming process. This is why a lewis base like aluminium bromide or ferric bromide is used. The ferric bromide takes in the bromine radicle and forms the brominium cation which helps in the formation of electrophile. Now this electrophile brominium cation attacks the benzene ring and forms a temporary sp3 hybrid carbon intermediate. Then the hydrogen is taken by the FeBr4- forming HBr and regenerating the FeBr3 as well as Aromaticity of the arene species at the same time. Here hydrocarbon is used in excess just to prevent the chances of multiple substitution in the same arene molecule.
Answer:
Weak bonds require less energy to form than strong bonds
Explanation:
According to Coulomb's law, the force between two species is inversely proportional to the distance between them. That said, the bigger the atoms are, the greater the bond length should be to form a molecule.
As a result, for a greater bond length, the attraction force is lower than for a shorter bond length. This implies that large atoms would form weak bonds and small atoms would form strong bonds.
Bond energy is defined as the amount of energy required to break the bond. If a bond is weak, it would require a low amount of energy to break it. This is also true for energy of formation, as it's the same process taking place in the opposite direction.