1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
satela [25.4K]
2 years ago
7

A 1.60 m cylindrical rod of diameter 0.450 cm is connected to a power supply that maintains a constant potential difference of 1

2.0 V across its ends, while an ammeter measures the current through it. You observe that at room temperature (20.0 ∘C) the ammeter reads 18.4 A , while at 92.0 ∘C it reads 17.4 A . You can ignore any thermal expansion of the rod.
Physics
2 answers:
CaHeK987 [17]2 years ago
6 0

Answer:

is incomplete:

Part A

Find the resistivity and for the material of the rod at 20 ∘C.

Part B

Find the temperature coefficient of resistivity at 20∘C for the material of the rod.

Answer:

a) p = 0.00000648 Ω*m

b) the temperature coefficient of resistivity is 0.00078/ºC

Explanation:

a) L = length of the cylindrical rod = 1.6 m

D = diameter of the cylindrical rod = 0.45 cm = 0.0045 m

the radius r = 0.00225 m

V = potential difference = 12 V

I at 20ºC = 18.4 V

I at 92ºC = 17.4 A

The area is equal to

A=\pi r^{2} =\pi *0.00225^{2} =0.0000159 m^{2}

the resistivity at 20ºC is

p=\frac{VA}{IL} =\frac{12*0.0000159}{18.4*1.6} =0.00000648ohm*m

b) the coefficient of resistivity at 20ºC is

R = V/I = 12/18.4 = 0.652 Ω

the coefficient of resistivity at 92ºC is

R = 12/17.4 = 0.689 Ω

the temperature coefficient of resistivity is

R(T)=R_{0} (1+\alpha (T-T_{0} )\\0.689=0.652(1+\alpha (92-20))\\\alpha =\frac{0.689-0.652}{46.94} =0.00078/C

frosja888 [35]2 years ago
3 0

The question is incomplete! Complete question along with answer and step by step explanation is provided below.

Question:

A 1.60 m cylindrical rod of diameter 0.450 cm is connected to a power supply that maintains a constant potential difference of 12.0 V across its ends, while an ammeter measures the current through it. You observe that at room temperature (20.0 ∘C) the ammeter reads 18.4 A , while at 92.0 ∘C it reads 17.4 A . You can ignore any thermal expansion of the rod.

a) Find the resistivity and for the material of the rod at 20° C .

b) Find the temperature coefficient of resistivity at 20° C for the material of the rod.

Given Information:

Room temperature = T₀ = 20° C

Temperature = T = 92° C

Current at 20° C = I₀ = 18.4 A

Current at 92° C = I = 17.4 A

Voltage = V = 12 V

Length = L = 1.60 m

Diameter = d = 0.450 cm = 0.0045 m

Required Information:

Resistivity of the material at 20° C = ρ = ?

Temperature coefficient of resistivity at 20° C = α = ?

Answer:

Resistivity of the material at 20° C = 2.062x10⁻⁶ Ω.m

Temperature coefficient of resistivity at 20° C = 7.986x10⁻⁴ per °C

Explanation:

a) We want to find out the resistivity of the material at 20° C

The resistivity of any material can be found using,

ρ = R₀A/L

Where R₀ is the resistance of the rod at 20° C, A is the area of rod and L is the length of the cylindrical rod.

We also know that area is given by

A = πr²

where r = d/2 = 0.0045/2 = 0.00225 m

A = π(0.00225)²  

A = 5.062⁻⁶ m²

We know that resistance of the material is given by

R₀ = V/I₀

R₀ = 12/18.4

R₀ = 0.6521 Ω

Therefore, the resistivity of the material is

ρ = R₀A/L

ρ = (0.6521*5.062⁻⁶)/1.60

ρ = 2.062x10⁻⁶ Ω.m

b) We want to find out the temperature coefficient of resistivity of the rod at 20° C

The temperature coefficient of resistivity is given by

α = R/R₀ - 1/(T - T₀)

Where R is the resistance of the rod at 90° C

R = V/I

R = 12/17.4

R = 0.6896 Ω

α = R/R₀ - 1/(T - T₀)

α = (0.6896/0.6521) - 1/(92° - 20°)

α = 0.0575/72°

α = 0.000798 per °C

α = 7.986x10⁻⁴ per °C

You might be interested in
A man has 887.5 J of kinetic energy while running with a velocity of 5 m/s. What is his mass?
monitta

Answer:

The mass of the man is 71 kg

Explanation:

Given;

kinetic energy of the man, K.E = 887.5 J

velocity of the man, v = 5 m/s

The mass of the man is calculated as follows;

K.E = ¹/₂mv²

where;

m is the mass of the man

2K.E = mv²

m = 2K.E / v²

m = (2 x 887.5) / (5)²

m = 71 kg

Therefore, the mass of the man is 71 kg

7 0
2 years ago
A ray of light crosses a boundary between two transparent materials. The medium the ray enters has a larger optical density. Whi
Tpy6a [65]

Answer:

The wavelength of the light decreases as it enters into the medium with the greater optical density.

The frequency of the light remains constant as it transitions between materials.

Explanation:

- When a ray of light crosses a boundary between two different materials, it undergoes refraction: the ray changes direction, and it also changes speed, according to the relationship:

v=\frac{c}{n}

where v is the speed of the ray of light in the material, c is the speed of light in a vacuum, n is the index of refraction of the material, which is larger for a medium with larger optical density. So, from the equation, we see that the larger the optical density, the smaller the speed of the wave.

- The frequency of the light does not depend on the properties of the medium, so it remains unchanged: therefore the statement

The frequency of the light remains constant as it transitions between materials.

is correct.

- Moreover, the wavelength of the ray of light is related to the speed and the frequency by the equation

\lambda=\frac{v}{f}

where v is the speed and f the frequency. Since we have seen that v decreases and f remains constant, this means that the wavelength decreases as well, so the statement

The wavelength of the light decreases as it enters into the medium with the greater optical density.

is also correct.

5 0
2 years ago
Which of the following statement describes an actual orbit
Leno4ka [110]

I suppose right answer is d because staellite means an object that move around the larger object and Jupiter also moves around the Sun

7 0
3 years ago
Read 2 more answers
A child drops a ball from a window. The ball strikes the ground in 3.0 seconds. What is the velocity ofthe ball the instant befo
Sergeeva-Olga [200]

Answer: The velocity of the ball is 30.0 m/s

This can be calculated by using the value of acceleration as 10.0 m/s2 in free fall and the given time of 3.0 seconds. To get the velocity, one will have to multiply the acceleration with the given time and the quotient would result to 30.0 m/s. Mostly all object regardless of their mass, fall to earth with the same acceleration in the absence of air resistance and as the child drops the ball from a window, it gains speed as it falls.

5 0
3 years ago
Destination is your Destination ​
Galina-37 [17]

Answer:

woah awesome so cool

Explanation:

4 0
2 years ago
Read 2 more answers
Other questions:
  • The length and width of a rectangular room are measured to be 3.92 ± 0.0035 m and 3.15 ± 0.0055 m. In this problem you can appro
    7·1 answer
  • Two dogs are running a race of 100m. The green dog runs the 100m in 10s. The
    15·1 answer
  • Which best explains parallel forces
    10·1 answer
  • Need help with my science quiz
    7·1 answer
  • Which of the following are correct statements about the way an atom is put
    5·1 answer
  • An electron is pushed into an electric field where it acquires a 1-V electrical potential. Suppose instead that two electrons ar
    12·1 answer
  • What would be the coefficient of performance if the refrigerator (operating between the same temperatures) was instead used as a
    10·1 answer
  • According to astronomers, how many galaxies are distributed across the observable universe?
    6·2 answers
  • Which of the following statements about lipids and carbohydrates is true?
    15·1 answer
  • I drew a doggy but ima show you guys the other ones tommorow cause im still drawing
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!