Answer:
9:36 and how far it will travel is 26 minutes
Answer:
Let M1 = 8 kg and M2 = 34 kg
F = M a = (M1 + M2) a
F = M2 g the net force accelerating the system
M2 g = (M1 + M2) a
a = M2 / (M1 + M2) g = 34 / (42) g = .81 g = 7.9 m/s^2
The idea that <span>Max Planck propose to help explain why a blackbody radiator did not give off light of increasingly high frequency as its temperature increased is that </span>C. Matter can absorb light only in certain specific amounts.
The change in Potential energy of the cat is 176.4 J.
<h3 /><h3>Potential Energy:</h3>
This is the energy due to the position of a body. The S.I unit is Joules (J)
The formula for change in potential energy.
<h3 /><h3>Formula:</h3>
- ΔP.E = mg(H-h).............. Equation 1
<h3>Where:</h3>
- ΔP.E = Change in potential energy
- m = mass of the cat
- g = acceleration due to gravity
- H = First height
- h = second height.
From the question,
<h3>Given:</h3>
- m = 15 kg
- H = 2.5 m
- h = 1.3 m
- g = 9.8 m/s²
Substitute these values into equation 1
- ΔP.E = 15×9.8(2.5-1.3)
- ΔP.E = 15×9.8×1.2
- ΔP.E = 176.4 J.
Hence, The change in Potential energy of the cat is 176.4 J
Learn more about Potential energy here: brainly.com/question/1242059
Answer:
70.6 mph
Explanation:
Car A mass= 1515 lb
Car B mass=1125 lb
Speed of car B is 46 miles/h
Distance before locking, d=19.5 ft
Coefficient of kinetic friction is 0.75
Initial momentum of car B=mv where m is mass and v is velocity in ft/s
46 mph*1.46667=67.4666668 ft/s
Initial momentum of car A is given by
where
is velocity of A
Taking East as positive and west as negative then the sum of initial momentum is
The common velocity is represented as
hence after collision, the final momentum is
From the law of conservation of linear momentum, sum of initial and final momentum equals each other hence
The acceleration of two cars
From kinematic equation
hence
Substituting the value of
in equation