Recall that variation of parameters is used to solve second-order ODEs of the form
<em>y''(t)</em> + <em>p(t)</em> <em>y'(t)</em> + <em>q(t)</em> <em>y(t)</em> = <em>f(t)</em>
so the first thing you need to do is divide both sides of your equation by <em>t</em> :
<em>y''</em> + (2<em>t</em> - 1)/<em>t</em> <em>y'</em> - 2/<em>t</em> <em>y</em> = 7<em>t</em>
<em />
You're looking for a solution of the form

where


and <em>W</em> denotes the Wronskian determinant.
Compute the Wronskian:

Then


The general solution to the ODE is

which simplifies somewhat to

Answer:
(a)
The function f is continuous at [1,e] and differentiable at (1,e), therefore
the mean value theorem applies to the function.
(b)
= 1.71828
Step-by-step explanation:
(a)
The function f is continuous at [1,e] and differentiable at (1,e), therefore
the mean value theorem applies to the function.
(b)
You are looking for a point
such that

You have to solve for
and get that
= 1.71828
Answer:
20x30xH=7000
11.6666 , depends on how much you need to round it. if 2 sig figs, round it to 12.
Check the picture below.
as you can see, the graph of the volume function comes from below goes up up up, reaches a U-turn then goes down down, U-turns again then back up to infinity.
the maximum is reached at the close up you see in the picture on the right-side.
Why we don't use a higher value from the graph since it's going to infinity?
well, "x" is constrained by the lengths of the box, specifically by the length of the smaller side, namely 5 - 2x, so whatever "x" is, it can't never zero out the smaller side, and that'd happen when x = 2.5, how so? well 5 - 2(2.5) = 0, so "x" whatever value is may be, must be less than 2.5, but more than 0, and within those constraints the maximum you see in the picture is obtained.