Dioxide gas because ita cooler
Answer:
1. The products of this reaction are ZnCl₂ and H₃PO₄.
2. 14.57 g.
Explanation:
<em>1. What would the products of this reaction be?</em>
- The balanced reaction between Zn₃(PO₄)₂ and HCl is represented as:
<em>Zn₃(PO₄)₂ + 6HCl → 3ZnCl₂ + 2H₃PO₄,</em>
It is clear that 1.0 mol of Zn₃(PO₄)₂ reacts with 6.0 mol of HCl to produce 3.0 mol of ZnCl₂ and 2.0 mol of H₃PO₄.
So, the products of this reaction are ZnCl₂ and H₃PO₄.
<em>2. If we produced 13.05 g of H₃PO₄, how many grams of hydrochloric acid would be need to start with?</em>
- Firstly, we should get the no. of moles (n) of 13.05 grams of H₃PO₄:
n = mass/molar mass = (13.05 g)/(97.994 g/mol) = 0.1332 mol.
<u><em>Using cross-multiplication:</em></u>
6.0 mol of HCl needed to produce → 2.0 mol of H₃PO₄, from stichiometry.
??? mol of HCl needed to produce → 0.1332 mol of H₃PO₄.
∴ The no. of moles of HCl needed = (6.0 mol)(0.1332 mol)/(2.0 mol) = 0.3995 mol.
∴ The mass of HCl needed = n*molar mass = (0.3995 mol)(36.46 g/mol) = 14.57 g.
<em>So, the grams of hydrochloric acid would be need to start with = 14.57 g.</em>
Answer:
The pressure inside the container would increase with each additional pump.
Explanation:
- From the general gas law of ideal gases:
<em>PV = nRT,</em>
where, P is the pressure of the gas.
V is the volume of the gas.
n is the no. of moles of the gas.
R is the general gas constant.
T is the temperature of the gas.
- As clear from the gas law; the pressure of the gas is directly proportional to the no. of moles of the gas.
<em>P α n.</em>
- As gas particles are pumped into a rigid steel container, the no. of moles of the gas will increase.
So, the pressure of the gas will increase.
<em>Thus, the right choice is: The pressure inside the container would increase with each additional pump.</em>
Answer:
The water cycle is driven primarily by the energy from the sun.
Answer:- 
Explanations:- Lattice energy depends on two factors, charge and size.
High charge and small size gives higher lattice energy where as low charge and bigger size gives lower lattice energy.
in LiCl, NaCl and KCl, the anion is same and also the charges for Li, Na and K are also same. The deciding factor here is the size of cations. Since the size increases as we move down a group, the order of size of these three atoms is Li<Na<K.
The order of lattice energy is exactly opposite as it's increases as the size decreases.
Now, if we look at magnesium chloride and strontium chloride then again the anion is common but the metals have higher charge as compared to the alkali metals(Li, Na and K). So, lattice energy values must be higher for these two compounds. If we compare Mg and Sr then size of Mg is smaller and so the lattice energy would be greater for this.
Hence, the increasing order of lattice energy is
.