Answer:
A decrease in [H3O+] and an increase in pH (option a)
Explanation:
Equilibrium of water is shown in this equation
2H₂O ⇄ H₃O⁺ + OH⁻
When you add NaOH, you are modifying [OH⁻]
NaOH → Na⁺ + OH⁻
In equilibrium of water, the [OH⁻] increases
2H₂O ⇄ ↓ H₃O⁺ + OH⁻ ↑
As the [OH⁻] increases, by Le Chatellier, the equilibrium tends to decrease [H₃O⁺].
If the [OH⁻] is higher, pH is also high so the solution of water and sodium hydroxide would be totally basic.
Mass is not conserved in chemical reactions. Mass is therefore never conserved because a little of it turns into energy in every reaction
Answer:
4.05 × 10²² atoms
Explanation:
Step 1: Given data
Mass of nickel: 3.95 g
Step 2: Calculate the moles corresponding to 3.95 g of nickel
The molar mass of nickel is 58.69 g/mol.
3.95 g × (1 mol/58.69 g) = 0.0673 mol
Step 3: Calculate the atoms in 0.0673 moles of nickel
We will use Avogadro's number: there are 6.02 × 10²³ atoms of nickel in 1 mole of atoms of nickel.
0.0673 mol × (6.02 × 10²³ atoms/1 mol) = 4.05 × 10²² atoms
Answer:
Particle Symbol Mass
electron e- 0.0005486 amu
proton p+ 1.007276 amu
neutron no 1.008665
Answer:
N₂ = 0.7515atm
O₂ = 0.1715atm
NO = 0.0770atm
Explanation:
For the reaction:
N₂(g) + O₂(g) ⇄ 2NO(g)
Where Kp is defined as:
Pressures in equilibrium are:
N₂ = 0.790atm - X
O₂ = 0.210atm - X
NO = 2X
Replacing in Kp:
0.0460 = [2X]² / [0.790atm - X] [0.210atm - X]
0.0460 = 4X² / 0.1659 - X + X²
0.0460X² - 0.0460X + 7.6314x10⁻³ = 4X²
-3.954X² - 0.0460X + 7.6314x10⁻³ = 0
Solving for X:
X = - 0.050 → False answer. There is no negative concentrations.
X = <em>0.0385 atm</em> → Right answer.
Replacing for pressures in equilibrium:
N₂ = 0.790atm - X = <em>0.7515atm</em>
O₂ = 0.210atm - X = <em>0.1715atm</em>
NO = 2X = <em>0.0770atm</em>