Answer:
Products are AgBr and KNO3
Answer:
74mL
Explanation:
Given parameters:
Molar mass of citric acid = 192g/mol
Molar mass of baking soda = 84g/mol
Concentration of citric acid = 0.8M
Mass of baking powder = 15g
Unknown parameters:
Volume of citric acid = ?
Solution
Equation of the reaction:
C₆H₈O₇ + 3NaHCO₃ → Na₃C₆H₅O₇ + 3H₂O + 3CO₂
Procedure:
- We work from the known parameters to the unknown. From the statement of the problem, we can approach the solution from the parameters of the baking powder.
- From the baking powder, we can establish a molar relationship between the two reactants. We employ the mole concept in this regard.
- We find the number of moles of the baking powder that went into the reaction using the expression below:
Number of moles = 
Number of moles =
= 0.179mole
- From the equation of the reaction, we can find the number of moles of the citric acid:
3 moles of baking powder reacted with 1 mole of citric acid
0.179 moles of baking powder would react with
:
This yields 0.059mole of citric acid
- To find the volume of the citric acid, we use the mole expression below:
Volume of citric acid = 
Volume of citric acid =
= 0.074L
Expressing in mL gives 74mL
After finding the oxidation states of atoms, you identify the half reactions (option c).
The half reactions are given by the change of the oxidation states of the atoms.
For example if Cu is in the left side with oxidation state 0 and in the other side with oxidation state 2+, then there you have a half reaction (oxidation reaction). And if you have O with oxidation state 0 in the left side and with oxidation state 2- in the right side, there you have other half reaction (reducing reaction).
Answer:
1.5x 10^24
Explanation:
for every 1 mol there are 6.02 x 10^23 molecules
2.5 mol x 6.02 x 10^23
-----------------
1 mol
Answer:
Explanation:
I did this class yesterday give me like 10min imma find my anwsers