Answer: A balanced equation for the given reaction is
.
Explanation:
The reaction equation will be as follows.

Number of atoms on the reactant side is as follows.
Number of atoms on the product side is as follows.
Since number of atoms on both the reactant and product sides are equal. Hence, the reaction equation is balanced.
Thus, we can conclude that a balanced equation for the given reaction is
.
There are things called "Reactants" and "Products" All chemical equations look something like "A + B →C (+ D...)," in which each letter variable is an element or a molecule (a collection of atoms held together by chemical bonds). The arrow represents the reaction or change taking place. Some equations may have a double-headed arrow (↔), which indicates that the reaction can proceed either forward or backward. When a compound has been written out, you must identify the elements and know their chemical symbols. The first element written is “first name” of the compound. Use the periodic table to find the chemical symbol for the element. So here is an example: Dinitrogen hexafluoride. The first element is nitrogen and the chemical symbol for nitrogen is N. To know the numbers of atoms that are present for each element you can just look at the prefix from the element For example: Dinitrogen has a the prefix “di-“ which means 2; therefore, there are 2 atoms of nitrogen present.
Write dinitrogen as N2.
Now for the second element or "last name" of the compound whatever will follow the first element so like; Dinitrogen hexafluoride. The second element is fluorine. Simply replace the “ide” ending with the actual element name. The chemical symbol for fluorine is F.
But the more you practice with, the easier it will be to decipher chemical formulas in the future and learn the language of chemistry.
Sulfur dioxide: SO2
Carbon tetrabromide: CBr4
Diphosphorus pentoxide: P2O5 ← That is one of the examples I'll give you.
have a gooooood daaaaayy
Answer:
B should be the answer, and ur low-key valid lol
Explanation:
Answer:- The natural abundance of
is 0.478 or 47.8% and
is 0.522 or 52.2% .
Solution:- Average atomic mass of an element is calculated from the atomic masses of it's isotopes and their abundances using the formula:
Average atomic mass = mass of first isotope(abundance) + mass of second isotope(abundance)
We have been given with atomic masses for
and
as 150.919860 and 152.921243 amu, respectively. Average atomic mass of Eu is 151.964 amu.
Sum of natural abundances of isotopes of an element is always 1. If we assume the abundance of
as n then the abundance of
would be 1-n .
Let's plug in the values in the formula:

151.964=150.919860n+152.921243-152.921243n
on keeping similar terms on same side:


negative sign is on both sides so it is canceled:



The abundance of
is 0.478 which is 47.8%.
The abundance of
is = 
= 0.522 which is 52.2%
Hence, the natural abundance of
is 0.478 or 47.8% and
is 0.522 or 52.2% .
The answer is C. Elastic potential energy