Despite its appearance, air has a ‘thickness’ so when the sun is high in the sky the light travels through the air on a very much shorter path than when it is low on the horizon.
Imagine that air water and you are below the surface, the light from an overhead sun will be quite sharp and bright, but if lower in the sky it will have to travel through much more water to reach you, so will look less bright and sharp. It ma not seem the same, but the atmosphere is just like very thin water, and a low lying sun will be drastically reduced in strength, so all you will see is a sun with a shift to the red end of the spectrum as all the actinic part will be filtered away by that thicker atmosphere.
The structures of the isomers and the m/z values of their peaks are not given in the question. The complete question is provided in the attachment
Answer:
Compound 2 (2,5-dimethylhexane) will not have the peaks at 29 and 85 m/z
Explanation:
The fragmentation of molecules by electron ionization of mass spectrometer occurs according to Stevenson's Rule, which states that "The most probable fragmentation is the one that leaves the positive charge on the fragment with the lowest ionization energy". This is much like the Markovnikov's Rule in organic chemistry which has predicted the formation of most stable carbocation and the addition of hydrogen halide to it.
The mass spectra of compound 1 (2,4-dimethylhexane) will contain all the m/z values mentioned in the question. Each peak indicate towards homologous series of fragmentation product of the compound 1. The first peak can be attributed to ethyl carbocation (m/z = 29), with the increase of 14 units the next peak indicates towards propyl carbocation (m/z = 43) and onwards until molecular ion peak of 114 m/z.
Compound 2 (2,5-dimethylhexane) structure shows that the cleavage of C-C bond will not yield a stable ethyl and hexyl carbocation. Hence, no peaks will be observed at 29 and 85 m/z. The absence of these two peaks can be used to distinguish one isomer from the other.
Answer:
Isotopes are atoms with the same number of protons, but different numbers of neutrons.
Explanation:
Ex.
Ne 20/10
Ne 21/10
Ne 22/10
*the number of protons in an atom must stay the same or the element itself will change drastically
Answer: It is a negative ion that has one more valence electron than a neutral bromine atom.
Explanation: I Hope that helped !!
Answer:A
Explanation:
They are proposed at the beginning of the scientific process to serve as a guide before carrying out scientific research and experimentation