Answer:
2a) -2
b) 8
Step-by-step explanation:
<u>Equation of a parabola in vertex form</u>
f(x) = a(x - h)² + k
where (h, k) is the vertex and the axis of symmetry is x = h
2 a)
Using the equation of a parabola in vertex form, a parabola with vertex (2, -6):
f(x) = a(x - 2)² - 6
If one of the x-axis intercepts is 6, then
f(6) = 0
⇒ a(6 - 2)² - 6 = 0
⇒ 16a - 6 = 0
⇒ 16a = 6
⇒ a = 6/16 = 3/8
So f(x) = 3/8(x - 2)² - 6
To find the other intercept, set f(x) = 0 and solve for x:
f(x) = 0
⇒ 3/8(x - 2)² - 6 = 0
⇒ 3/8(x - 2)² = 6
⇒ (x - 2)² = 16
⇒ x - 2 = ±4
⇒ x = 6, -2
Therefore, the other x-axis intercept is -2
b)
Using the equation of a parabola in vertex form, a parabola with vertex (2, -6):
f(x) = a(x - 2)² - 6
If one of the x-axis intercepts is -4, then
f(-4) = 0
⇒ a(-4 - 2)² - 6 = 0
⇒ 36a - 6 = 0
⇒ 36a = 6
⇒ a = 6/36 = 1/6
So f(x) = 1/6(x - 2)² - 6
To find the other intercept, set f(x) = 0 and solve for x:
f(x) = 0
⇒ 1/6(x - 2)² - 6 = 0
⇒ 1/6(x - 2)² = 6
⇒ (x - 2)² = 36
⇒ x - 2 = ±6
⇒ x = 8, -4
Therefore, the other x-axis intercept is 8
T=65$+(65$*.06)
T=65$+3.9$
T=68.9$
To start, the first thing you need to know is that when you add decimals, you must line the decimal up, meaning, if you were adding 2.7+4.1, you have to make sure 2 is lined up with 4, and 7 is lined up with 1 so that the decimals align. Then, you add straight down from right to left and you get 6.8 as your answer.
Answer:
im not sure im really sorry
Step-by-step explanation:
im answering this because i have the same question