Answer:
I looked it up but got perihelion so I don't know if that will help at all but try um.... I don't know try L
Explanation:
Answer:
Explanation:
All the rest of the information is extraneous. The only 2 things you have to know are
d = 20 km
t = 8 minutes = 8/60 hours = 0.13333333
So the speed is s = d/t
s = 20/0.1333333 = 150 km/hour
Note: you have not specified what units the speed is. I suppose you could answer 20/8 = 2.5 km/min
Answer:
The thrown rock strike 2.42 seconds earlier.
Explanation:
This is an uniformly accelerated motion problem, so in order to find the arrival time we will use the following formula:
So now we have an equation and unkown value.
for the thrown rock
for the dropped rock
solving both equation with the quadratic formula:
we have:
the thrown rock arrives on t=5.4 sec
the dropped rock arrives on t=7.82 sec
so the thrown rock arrives 2.42 seconds earlier (7.82-5.4=2.42)
Answer:
Electric field acting on the electron is 127500 N/C.
Explanation:
It is given that,
Mass of an electron,
Charge on electron,
Initial speed of electron, u = 0
Final speed of electron,
Distance covered, s = 2 cm = 0.02 m
We need to find the electric field required. Firstly, we will find the acceleration of the electron from third equation of motion as :
According to Newton's law, force acting on the electron is given by :
F = ma
Electric force is given by :
F = q E, E = electric field
E = 127500 N/C
So, the electric field is 127500 N/C. Hence, this is the required solution.