The statement which is true of a wave that’s propagating along the pavement and girders of a suspension bridge is A. The wave is mechanical, with particles vibrating in a direction that is parallel to that of the wave, forming compressions and rarefactions.
Answer:
The moment of inertia is 
Explanation:
The moment of inertia is equal:

If r is 
and 


Answer:
1/3 the distance from the fulcrum
Explanation:
On a balanced seesaw, the torques around the fulcrum calculated on one side and on another side must be equal. This means that:

where
W1 is the weight of the boy
d1 is its distance from the fulcrum
W2 is the weight of his partner
d2 is the distance of the partner from the fulcrum
In this problem, we know that the boy is three times as heavy as his partner, so

If we substitute this into the equation, we find:

and by simplifying:

which means that the boy sits at 1/3 the distance from the fulcrum.
The mass number is the total number of protons and neutrons within an atom and since we know that the unknown element has 6 neutrons, we can simply subtract the number of neutrons from the mass number to get the number of protons.
17 - 6 = 11
There are 11 protons in this unknown element.
Extra:
The number of protons (+) and electrons (-) are equal in a neutral atom so since you know that there are 11 protons you also know that there are 11 electrons. On the periodic table, the element with 11 electrons is Na or Sodium.
Hope this helps! :)
Answer:
As point B is located inside the copper block so net electric field at point B is j.
Explanation:
Consider the figure attached below. The net electric field at location B,that is inside the copper block is zero because when a conductor is charged or placed in an electric field of external charges, net charge lies on the surface of conductor and there is no electric field inside the conductor. As point B is located inside the copper block so net electric field at point B is zero as well direction of net electric field at point B is zero.