Answer:
The entropy change of the sample of water = 6.059 x 10³ J/K.mol
Explanation:
Entropy: Entropy can be defined as the measure of the degree of disorder or randomness of a substance. The S.I unit of Entropy is J/K.mol
Mathematically, entropy is expressed as
ΔS = ΔH/T....................... Equation 1
Where ΔH = heat absorbed or evolved, T = absolute temperature.
<em>Given: If 1 mole of water = 0.0018 kg,</em>
<em>ΔH = latent heat × mass = 2.26 x 10⁶ × 1 = 2.26x 10⁶ J.</em>
<em>T = 100 °C = (100+273) K = 373 K.</em>
<em>Substituting these values into equation 1,</em>
<em>ΔS =2.26x 10⁶/373</em>
ΔS = 6.059 x 10³ J/K.mol
Therefore the entropy change of the sample of water = 6.059 x 10³ J/K.mol
The pressure at a certain depth underwater is:
P = ρgh
P = pressure, ρ = sea water density, g = gravitational acceleration near Earth, h = depth
The pressure exerted on the submarine window is:
P = F/A
P = pressure, F = force, A = area
The area of the circular submarine window is:
A = π(d/2)²
A = area, d = diameter
Set the expressions for the pressure equal to each other:
F/A = ρgh
Substitute A:
F/(π(d/2)²) = ρgh
Isolate h:
h = F/(ρgπ(d/2)²)
Given values:
F = 1.1×10⁶N
ρ = 1030kg/m³ (pulled from a Google search)
g = 9.81m/s²
d = 30×10⁻²m
Plug in and solve for h:
h = 1.1×10⁶/(1030(9.81)π(30×10⁻²/2)²)
h = 1540m
Answer:
Immediate, potential
Explanation:
In america there are many safety council .in which drivers are trained. According to american safety council in america the drivers are trained in such a way that they can ahead two seconds so that there will not be any immediate hazards and 10 to 12 seconds down the road for potential hazards
So in the blanks there will be immediate and potential
Answer rain gauge measures rain shadow units millimetres
Moon, earth, sun solar system, galaxy, universe