Answer:
At the molecular level, materials are held together by bonds, which act like springs for small displacements from the equilibrium spacing between neighboring atoms. Push the atoms close, the bond pushes back to keep them apart. Pull them apart, the bond pulls the atoms closer. For those small displacements, it acts like a spring
The speed of the wave will be related to the stiffness of of those springs - you compress the material - how quickly do all of those little springs rebound and push their neighboring atoms away, sending that wave of compression through the material.
Explanation:
You are exerting 100N. Since there’s no NET force, then there must be exactly 100N pushing exactly back on your 100N to cancel it to exactly zero. Newton's first law states that whether a body is at rest or travelling in a straight line at a constant speed, it will remain at rest or continue to move in a straight line at a constant speed unless acted upon by a force.
The Nebular Hypothesis is the most accepted explanation of the origin of our solar system. It states that the Sun was formed by a massive cloud of dust and gas light-years across, and it was bigger than the actual sun itself. Most of the mass in the center formed the sun, and the rest expanded outward.
The change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².
The given parameters;
- <em>Current flowing in the wire, I = 4.00 mA</em>
- <em>Initial diameter of the wire, d₁ = 4 mm = 0.004 m</em>
- <em>Final diameter of the wire, d₂ = 1 mm = 0.001 m</em>
- <em>Length of wire, L = 2.00 m</em>
- <em>Density of electron in the copper, n = 8.5 x 10²⁸ /m³</em>
<em />
The initial area of the copper wire;

The final area of the copper wire;

The initial drift velocity of the electrons is calculated as;

The final drift velocity of the electrons is calculated as;

The change in the mean drift velocity is calculated as;

The time of motion of electrons for the initial wire diameter is calculated as;

The time of motion of electrons for the final wire diameter is calculated as;

The average acceleration of the electrons is calculated as;

Thus, the change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².
Learn more here: brainly.com/question/22406248
Answer:
Subducting convergent boundary
Explanation:
Generally, volcanoes occurs in both divergent and convergent boundaries. But the convergent boundary it occurs is usually associated with subduction.
Divergent boundary, plates move away from each other creating a new crust in the process. The diverging plates creates the space for magma to be squeezed through cracks and fissures. The magma's erupt to form volcanoes. In the Atlantic ocean the spreading of the plates causes an upwelling of magma through the crest of the Atlantic ridges. New oceanic crust are formed through this process. Sometimes the magma eruption forms volcanoes that are higher than the sea level.
Convergent boundary , plates collides with each other . But in the case of volcanoes existence , the collision should be between a denser plate(oceanic plates) and a less dense plates(continental plates) so that subduction can take place. The subducted plates (oceanic plates) creates trenches and get expose to high temperature and pressure as it sinks toward the mantle. The upper mantle rocks melts and migrate to the earth surface forming volcanoes . Over 75% of the volcanoes occur along the pacific basin where convergent boundary is dominant. Pacific ring of fire has one of the most number of volcanoes.