1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
7nadin3 [17]
2 years ago
15

Consider the following geometric solids.

Physics
2 answers:
Bad White [126]2 years ago
5 0

Before answering this question, first we have to understand the effect of ratio of surface area to volume on the rate of diffusion.

The rate of diffusion for a body having larger surface area as compared to the ratio of surface area to volume will be more than a body having less surface area. Mathematically it can written as-

                           V∝ R            [ where v is the rate of diffusion and r is the ratio of surface area to volume]

As per the question,the ratio of surface area to volume for a sphere is given 0.08m^{-1}

The surface area to volume ratio for right circular cylinder is given 2.1m^{-1}

Hence, it is obvious that the ratio is more for right circular cylinder.As the rate diffusion is directly proportional to the surface area to volume ratio,hence rate of diffusion will be more for right circular cylinder.

Hence the correct option is B. The rate of diffusion would be faster for the right cylinder.


Triss [41]2 years ago
5 0
B
The greater the surface area to volume ratio, the greater the rate of diffusion.
You might be interested in
A ship travels with velocity given by 12, with current flowing in the direction given by 11 with respect to some co-ordinate axe
nataly862011 [7]

Answer:

v_x = 11.78 m/s

Explanation:

Velocity of the ship is given as

v = 12 units

the direction of the velocity of the ship is making an angle of 11 degree with the current

so we will have two components of the velocity

1) along the direction of the current

2) perpendicular to the direction of the current

so here we know that the component of the ship velocity along the direction of the current is given as

v_x = v cos\theta

v_x = 12 cos11

v_x = 11.78 m/s

7 0
2 years ago
Which statement best describes how light behaves with liquids, gases, and solids?
juin [17]

Answer:

C number is write i think

3 0
2 years ago
WHO LIKES ROGUE ONE AND CLONE WARS AND IS ADDICTED TO STAR WARS AND WOULD WISH THAT YOU COULD WORK WITH DAVE FILONI. Same bro Sa
scoray [572]

Answer:

heck ya its so fire

Explanation:

3 0
2 years ago
A particle with charge 3.01 µC on the negative x axis and a second particle with charge 6.02 µC on the positive x axis are each
ra1l [238]

Answer:

The third particle should be at 0.0743 m from the origin on the negative x-axis.

Explanation:

Let's assume that the third charge is on the negative x-axis. So we have:

E_{1}+E_{3}-E_{2}=0

We know that the electric field is:

E=k\frac{q}{r^{2}}

Where:

  • k is the Coulomb constant
  • q is the charge
  • r is the distance from the charge to the point

So, we have:

k\frac{q_{1}}{r_{1}^{2}}+k\frac{q_{3}}{r_{3}^{2}}-k\frac{q_{2}}{r_{2}^{2}}=0

Let's solve it for r(3).

\frac{3.01}{0.0429^{2}}+\frac{9.03}{r_{3}^{2}}-\frac{6.02}{0.0429^{2}}=0

r_{3}=0.0743\:  

Therefore, the third particle should be at 0.0743 m from the origin on the negative x-axis.

I hope it helps you!

 

3 0
2 years ago
A music fan at a swimming pool is listening to a radio on a diving platform. The radio is playing a constant- frequency tone whe
joja [24]

Answer:

The Doppler Effect is given by the following relation;

f' = \left (\dfrac{v + v_0}{v - v_s} \right) \times f

Where;

f' = The frequency the observer hears

f = Actual frequency of the wave

v = The velocity of the sound wave

v_o = The velocity of the observer

v_s = The velocity of the source

Where the observer is stationary, we have;

(i) When the source is moving in the direction of the observer

f' = \left (\dfrac{v }{v - v_s} \right) \times f

(ii) When the source is receding from the observer, we have;

f' = \left (\dfrac{v }{v + v_s} \right) \times f

Therefore;

(a) A person left behind on the platform

For a person left behind on the platform, we have that the radio source is receding, therefore, we have;

f' = \left (\dfrac{v }{v + v_s} \right) \times f

(1) Given that (v + v_s) > v, therefore, v < (v + v_s), f' < f, the frequency heard by the person left on the platform, f', is smaller (lower) than the frequency produced by the radio

(2) The frequency is not constant as the speed of the source is increasing while it under the acceleration due to gravity

(3) During the fall, the speed of the source continuously increases under the effect of gravitational attraction and therefore the frequency heard by the person on the platform becomes progressively smaller

(b) A person down below floating on a rubber raft

For the the person down below on the rubber raft, the radio source is advancing

Therefore, the radio source is moving towards the person at rest down on the rubber raft, therefore, we have;

f' = \left (\dfrac{v }{v - v_s} \right) \times f

(1) Given that (v - v_s) < v, therefore, f' > f, the frequency heard by the person down below floating on the rubber raft, f', is greater (higher) than the frequency produced by the radio

(2) The frequency is not constant as the speed of the source is increasing while it under the acceleration due to gravity

(3) During the fall, the speed of the source continuously increases under the effect of gravitational attraction and therefore the frequency heard by the person on the platform becomes progressively greater (higher)

Explanation:

7 0
2 years ago
Other questions:
  • Who invented steam engine​
    13·2 answers
  • PLEASE HELP, I am desperate. This part of the presentation I am completely lost with. It is STEP 6, I got the rest finished.
    12·1 answer
  • What must the net force be equal to in order for the forces on an object to be balanced?
    8·1 answer
  • A web page designer creates an animation in which a dot on a computer screen has a position of r⃗ =[ 4.50 cm +( 2.90 cm/s2 )t2]i
    13·1 answer
  • A rectangular tank is filled to a depth of 10m with freshwater and open to air at atmospheric pressure.
    15·1 answer
  • HELP ASAP !!
    11·2 answers
  • What are the factors of works?
    8·1 answer
  • high temperature in metals leads to decrease in conductivity while increase in Temperature conductivity in semiconductor increas
    6·1 answer
  • HELP ME ASAP PLS, ( zoom in on the picture )
    13·1 answer
  • Lgbtq team lots of love
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!