Power = (energy) / (time)
= (1370 joules) / (100 seconds)
= 13.7 joules/second
= 13.7 watts .
That's not an awful lot of power, especially for a strenuous activity like
rock-climbing. Shoot ! Even I could probably perform at that level.
Compare 13.7 watts to the light power coming out of a 20-watt night light.
13.7 watts = 0.018 horsepower. (rounded)
Earth’s tilt from its axis.
For explanation:
The angle in which Earth is at is 23.5°. This causes its tilt which affects how the Sun’s light hits Earth
The speed of the pin after the elastic collision is 9 m/s east.
<h3>
Final speed of the pin</h3>
The final speed of the pin is calculated by applying the principle of conservation of linear momentum as follows;
m1u1 + mu2 = m1v1 + m2v2
where;
- m is the mass of the objects
- u is the initial speed of the objects
- v is the final speed of the objects
4(1.4) + 0.4(0) = 4(0.5) + 0.4v2
5.6 = 2 + 0.4v2
5.6 - 2 = 0.4v2
3.6 = 0.4v2
v2 = 3.6/0.4
v2 = 9 m/s
Thus, The speed of the pin after the elastic collision is 9 m/s east.
Learn more about linear momentum here: brainly.com/question/7538238
#SPJ1
Answer:
Explanation:
I is the moment of inertia of the pulley, α is the angular acceleration of the pulley and T is the tension in the rope. Let a is the linear acceleration.
The relation between the linear acceleration and the angular acceleration is
a = R α .... (1)
According to the diagram,
T x R = I x α
T x R = I x a / R from equation (1)
T = I x a / R² .... (2)
mg - T = ma .... (3)
Substitute the value of T from equation (2) in equation (3)


T is the acceleration in the system
Substitute the value of a in equation (2)


This is the tension in the string.
Answer:
a) x(t) = 10t + (2/3)*t^3
b) x*(0.1875) = 10.18 m
Explanation:
Note: The position of the horse is x = 2m. There is a typing error in the question. Otherwise, The solution to cubic equation holds a negative value of time t.
Given:
- v(t) = 10 + 2*t^2 (radar gun)
- x*(t) = 10 + 5t^2 + 3t^3 (our coordinate)
Find:
-The position x of horse as a function of time t in radar system.
-The position of the horse at x = 2m in our coordinate system
Solution:
- The position of horse according to radar gun:
v(t) = dx / dt = 10 + 2*t^2
- Separate variables:
dx = (10 + 2*t^2).dt
- Integrate over interval x = 0 @ t= 0
x(t) = 10t + (2/3)*t^3
- time @ x = 2 :
2 = 10t + (2/3)*t^3
0 = 10t + (2/3)*t^3 + 2
- solve for t:
t = 0.1875 s
- Evaluate x* at t = 0.1875 s
x*(0.1875) = 10 + 5(0.1875)^2 + 3(0.1875)^3
x*(0.1875) = 10.18 m