1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marysya [2.9K]
3 years ago
12

A brick is dropped from a high scaffold. a. What is its velocity after 4.0s ?

Physics
1 answer:
Ilia_Sergeevich [38]3 years ago
6 0

Answer:

A: 1.962

B: 3.924

Explanation:

g = G *M /R^2

g = 9.807*M/R^2 the gravitational constant of ground level on earth is about 9.807

g = 9.807*5lbs/R^2 the average brick is about 5 pounds.

g = 9.807*5*10^2.   I'm assuming the height is around ten feet to help you out.

with these numbers plugged in you get an acceleration of 0.4905 a final velocity after 4 seconds 1.962. It's height fallen after 4 seconds is 3.924.

( M = whatever the brick weighs it's not specified in the question)

(R = the distance from the ground or how high the scaffold is)

(hopefully you can just plug your numbers in there hope this helps)

You might be interested in
A spherical asteroid of average density would have a mass of 8.7×1013kg if its radius were 2.0 km.A)If you and your spacesuit ha
WITCHER [35]

A) 0.189 N

The weight of the person on the asteroid is equal to the gravitational force exerted by the asteroid on the person, at a location on the surface of the asteroid:

F=\frac{GMm}{R^2}

where

G is the gravitational constant

8.7×10^13 kg is the mass of the asteroid

m = 130 kg is the mass of the man

R = 2.0 km = 2000 m is the radius of the asteroid

Substituting into the equation, we find

F=\frac{(6.67\cdot 10^{-11})(8.7\cdot 10^{13} kg)(130 kg)}{(2000 m)^2}0.189 N=

B) 2.41 m/s

In order to orbit just above the surface of the asteroid (r=R), the centripetal force that keeps the astronaut in orbit must be equal to the gravitational force acting on the astronaut:

\frac{GMm}{R^2}=\frac{mv^2}{R}

where

v is the speed of the astronaut

Solving the formula for v, we find the minimum speed at which the astronaut should launch himself and then orbit the asteroid just above the surface:

v=\sqrt{\frac{2GM}{R}}=\sqrt{\frac{2(6.67\cdot 10^{-11})(8.7\cdot 10^{13} kg)}{2000 m}}=2.41 m/s

3 0
3 years ago
The axis of the earth is<br> Tilted about 23.5 degrees<br> Vertical<br> Vertical
melisa1 [442]

Answer:

The axis of rotation of the Earth is tilted at an angle of 23.5 degrees away from vertical, perpendicular to the plane of our planet's orbit around the sun. The tilt of the Earth's axis is important, in that it governs the warming strength of the sun's energy.

Explanation:

can i get brainliest

5 0
2 years ago
Nerf this hbhbhbbhbbhbhbhbhbhbhb
Vanyuwa [196]

Answer:

.......................

Explanation:

what

6 0
2 years ago
Read 2 more answers
I am struggling on this physics question. Brainly is my last hope. Could somebody please provide an answer to this question, wit
Aleks [24]

1) 29.4 N

The force of gravity between two objects is given by:

F=G\frac{Mm}{r^2}

where

G is the gravitational constant

M and m are the masses of the two objects

r is the separation between the centres of mass of the two objects

In this problem, we have

M=5.97\cdot 10^{24} kg (mass of the Earth)

m=3.0 kg (mass of the box)

r=R=6.37\cdot 10^6 m (Earth's radius, which is also the distance between the centres of mass of the two objects, since the box is located at Earth's surface)

Substituting into the equation, we find F:

F=\frac{(6.67\cdot 10^{-11})(5.97\cdot 10^{24})(3.0)}{(6.37\cdot 10^6)^2}=29.4 N

2) g=9.8 m/s^2

Let's now calculate the ratio F/m. We have:

F = 29.4 N

m = 3.0 kg

Subsituting, we find

\frac{F}{m}=\frac{29.4}{3.0}=9.8 N/kg = 9.8 m/s^2

This is called acceleration of gravity, and it is the acceleration at which every object falls near the Earth's surface. It is indicated with the symbol g.

We can prove that this is the acceleration of the object: in fact, according to Newton's second law,

F=ma

where a is the acceleration of the object. Re-arranging,

a=\frac{F}{m}

which is exactly equal to the quantity we have calculated above.

5 0
3 years ago
Mangrove forests play an important role in _______.
AysviL [449]
D. All of the above

At high tide fish will feed among the mangrove roots - rich fishing ground

The trees trap sediment and soil in the river that would flow out to sea which also helps stop erosion

Wildlife utilise almost every part of the tree, with insects and birds, monkeys and lizards in the branches, shrimps and fish in the roots, and snails and clams in the soil
4 0
2 years ago
Other questions:
  • Which two vectors, when subtracted (i.e., when one vector is subtracted from the other), will have the largest magnitude?
    15·1 answer
  • The force required to compress a non-standard spring as a function of displacement from equilibrium x is given by the equation f
    13·1 answer
  • How to understand physics
    5·1 answer
  • What does the stomach acid have in protein digestion
    13·1 answer
  • In a elastic lab what did you change and why?
    9·2 answers
  • Two examples of inventions that increase friction?
    10·1 answer
  • How many types of ion are formed when water splits during
    5·1 answer
  • Ok, what determines the color of light?
    10·2 answers
  • Suppose you were digging a well into saturated sediments. Why is the sediment’s permeability an important factor in deciding whe
    15·1 answer
  • How many does the stor6 need
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!