For the answer to this question,
Thalia must consider the weight of the object and the mass of the sculpture. Weight and mass are different things. She should also consider the time on how long it will take to move it and where she'll move it.
Answer:
Moment of inertia = 0.3862kg-m²
Explanation:
2.00x10³
2.80cm
145 rad
r = r⊥ x F
F is an applied force
r⊥ is the distance between the applied force and axis
Force exerted = 2.00x10³
r⊥ = 2.8cm = 0.028m
Alpha = 145rad/s²
r = 0.028m x 2.00x10³
r = 56.0N-m
To get the moment of inertia
56.0N-m² = (145rad/s²) x I
The I would be:
I = (56.0N-m²)/(145rad/s²)
I = 56/145
= 0.3862Kg-m²
This is the moment of inertia.
Thank you!
If only internal forces are doing work (no work done by external forces), then there is no change in the total amount of mechanical energy. The total mechanical energy is said to be conserved. ... In these situations, the sum of the kinetic and potential energy is everywhere the same.
Answer:
There are seven principles that form the content grounds of our teaching framework:
Non-maleficence. ...
Beneficence. ...
Health maximisation. ...
Efficiency. ...
Respect for autonomy. ...
Justice. ...
Proportionality.