1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alekssandra [29.7K]
3 years ago
7

Reflecting telescopes are popular because they're

Physics
2 answers:
Crank3 years ago
6 0
C. easier to build than a refracting telescope

Big mirrors used in reflecting telescopes are easier and cheaper to make than big lenses which would cost more because of the quality of glass required to make refracting telescopes
nasty-shy [4]3 years ago
6 0

C. easier to build than a refracting telescope.

You might be interested in
A motorboat maintained a constant speed of 15 miles per hour relative to the water in going 10 miles upstream and then returning
Lesechka [4]

Answer:

speed of current is 5 mile/hr

Explanation:

GIVEN DATA:

speed of motorboat = 15 miles/hr relative with water

let c is speed of current

15-c is speed of boat at  upstream

15+c is speed of boat at downstream

we know that

travel time=distance/speed

\frac{10}{15-c} +\frac{10}{15+c} = 1.5

150+10c+150-10c=1.5(15-c)(15+c)

300=1.5(225-c^2)

300=337.5-1.5c^2

200=225-c^2

c^2=25

c = 5

so speed of current is 5 mile/hr

6 0
3 years ago
Two satellites are in circular orbits around the earth. The orbit for satellite A is at a height of 403 km above the earth’s sur
BARSIC [14]

Answer:

v_A=7667m/s\\\\v_B=7487m/s

Explanation:

The gravitational force exerted on the satellites is given by the Newton's Law of Universal Gravitation:

F_g=\frac{GMm}{R^{2} }

Where M is the mass of the earth, m is the mass of a satellite, R the radius of its orbit and G is the gravitational constant.

Also, we know that the centripetal force of an object describing a circular motion is given by:

F_c=m\frac{v^{2}}{R}

Where m is the mass of the object, v is its speed and R is its distance to the center of the circle.

Then, since the gravitational force is the centripetal force in this case, we can equalize the two expressions and solve for v:

\frac{GMm}{R^2}=m\frac{v^2}{R}\\ \\\implies v=\sqrt{\frac{GM}{R}}

Finally, we plug in the values for G (6.67*10^-11Nm^2/kg^2), M (5.97*10^24kg) and R for each satellite. Take in account that R is the radius of the orbit, not the distance to the planet's surface. So R_A=6774km=6.774*10^6m and R_B=7103km=7.103*10^6m (Since R_{earth}=6371km). Then, we get:

v_A=\sqrt{\frac{(6.67*10^{-11}Nm^2/kg^2)(5.97*10^{24}kg)}{6.774*10^6m} }=7667m/s\\\\v_B=\sqrt{\frac{(6.67*10^{-11}Nm^2/kg^2)(5.97*10^{24}kg)}{7.103*10^6m} }=7487m/s

In words, the orbital speed for satellite A is 7667m/s (a) and for satellite B is 7487m/s (b).

7 0
3 years ago
A car is 200 m from a stop sign and traveling toward the sign at 40.0 m/s. At this time, the driver suddenly realizes that she m
victus00 [196]

Answer:

The acceleration of the car will be a=9600m/sec^

Explanation:

We have given that distance from stop sign s = 200 m

Time t = 0.2 sec

We have to find the constant acceleration

Now from second equation of motion s=ut+\frac{1}{2}at^2

200=40\times 0.2+\frac{1}{2}\times a\times 0.2^2

a=9600m/sec^

So the acceleration of the car will be a=9600m/sec^

6 0
3 years ago
A ball A of mass 0.5 kg moving with a Velacity of 10 m/s a head on Collision with a ball B of mass 2kg moving with a Velocity of
Nesterboy [21]

Answer:

The common velocity v after collision is 2.8m/s²

Explanation:

look at the attachment above ☝️

3 0
2 years ago
In a coiled spring, the particles of the medium vibrate to and fro about their
Kitty [74]

Answer:

In a coiled spring, the particles of the medium vibrate to and fro about their mean positions at an angle of

A. 0° to the direction of propagation of wave

Explanation:

The waveform of a coiled spring is a longitudinal wave, which is made up of vibrations of the spring which are in the same direction as the direction of the wave's advancement

As the coiled spring experiences a compression force and is then released, it experiences a sequential movement of the wave of the compression that extends the length of the coiled spring which is then followed by a stretched section of the coiled spring in a repeatedly such that the direction of vibration of particles of the coiled is parallel to direction of motion of the wave

From which we have that the angle between the direction of vibration of the particles of the coiled spring and the direction of propagation of the wave is 0°.

8 0
3 years ago
Other questions:
  • What’s the origin of a meteor shower?
    13·1 answer
  • The loudness of a sound is related to the ___________ of the vibration that produces the sound.
    13·1 answer
  • Which of the following is a contact force?
    13·2 answers
  • Which type of energy is stored in a stretched string on the bow in the following figure ​
    6·2 answers
  • How do you do to your question to see if its answered?
    10·2 answers
  • 4. Which of the following would be a good reference point to describe the motion of a dog?
    9·1 answer
  • When the gun fires a projectile with a mass of 0.040 kg and a speed of 380 m/s, what is the recoil velocity of the shotgun and a
    12·1 answer
  • A.
    11·1 answer
  • Two loudspeakers are about 10 mm apart in the front of a large classroom. If either speaker plays a pure tone at a single freque
    7·1 answer
  • Determine the magnitude of the force between two 42 m-long parallel wires separated by 0.03 m, both carrying 6.3 A in the same d
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!