Answer:
The probability is 0.0052
Step-by-step explanation:
Let's call A the event that the four cards are aces, B the event that at least three are aces. So, the probability P(A/B) that all four are aces given that at least three are aces is calculated as:
P(A/B) = P(A∩B)/P(B)
The probability P(B) that at least three are aces is the sum of the following probabilities:
- The four card are aces: This is one hand from the 270,725 differents sets of four cards, so the probability is 1/270,725
- There are exactly 3 aces: we need to calculated how many hands have exactly 3 aces, so we are going to calculate de number of combinations or ways in which we can select k elements from a group of n elements. This can be calculated as:

So, the number of ways to select exactly 3 aces is:

Because we are going to select 3 aces from the 4 in the poker deck and we are going to select 1 card from the 48 that aren't aces. So the probability in this case is 192/270,725
Then, the probability P(B) that at least three are aces is:

On the other hand the probability P(A∩B) that the four cards are aces and at least three are aces is equal to the probability that the four card are aces, so:
P(A∩B) = 1/270,725
Finally, the probability P(A/B) that all four are aces given that at least three are aces is:

Answer:
A triangle is shown Below based on this triangle which one of the following statements is true
Step-by-step explanation:
5 equals 5/1. Simple as that.
Answer: area for circle is πr² so πr² =28.26 and we can sub 3.14 as pi
3.14*r²=28.26 we can divide by 3.14 to get r² on it's own
r²=28.26/3.14
then we root both sides to get r on it's own
28.26/3.14=9 √9=3
and the diameter is double the radius 3*2=6 so the diameter is 6
Step-by-step explanation:
<span>So, L*W=A Because it is 4 cm longer, L=W+4 Because the area is 96, LW=96 Substitute to get W(W+4)=96 Multiply it out. W^2+4W-96=0 By solving the quadratic, W+12(W-8)=0 so either W+12 or W-8 is zero. The width must be positive, so the width is 8. Therefore the length is 12.
Hope this helps.</span>