The figure consists of three objects, a rectangle, a trapezoid, a triangle
Find the area of the rectangle
The rectangle is 16 in long and 9 in wide
a₁ = l × w
a₁ = 16 × 9
a₁ = 144 in²
Find the area of the trapezoid
The base of trapezoid is 31 in and 16 in, and the height is 35 - 20 = 15 in.
a₂ = 1/2 × (a + b) × h
a₂ = 1/2 × (31 + 16) × 15
a₂ = 1/2 × 47 × 15
a₂ = 352.5 in²
Find the area of the triangle
The base of the triangle is 31 in, the height is 20 in
a₃ = 1/2 × b × h
a₃ = 1/2 × 31 × 20
a₃ = 310 in²
Add the area together
a = a₁ + a₂ + a₃
a = 144 + 352.5 + 310
a = 806.5
The answer is 806.5 in²
Answer:
Mean age: 48
Standard deviation: 4
Step-by-step explanation:
a) Mean
The formula for Mean = Sum of terms/ Number of terms
Number of terms
= 42 + 54 + 50 + 54 + 50 + 42 + 46 + 46 + 48+ 48/ 10
= 480/10
= 48
The mean age is 48
b) Standard deviation
The formula for Standard deviation =
√(x - Mean)²/n
Where n = number of terms
Standard deviation =
√[(42 - 48)² + (54 - 48)² + (50 - 48)² +(54 - 48)² + (50 - 48)² +(42 - 48)² + (46 - 48)² + (46 - 48)² + (48 - 48)² + (48 - 48)² / 10]
= √-6² + 6² + 2² + 6² + 2² + -6² + -2² + -2² + 0² + 0²/10
=√36 + 36 + 4 + 36 + 4 + 36 + 4 + 4 + 0 + 0/ 10
=√160/10
= √16
= 4
The standard deviation of the ages is 4
Answer:
72 degrees
Step-by-step explanation:
Slope
y=-(7/8)x+105
plug in 72 for the y
72=-(7/8)x+105
-177=-(7/8)x
72 = x
When the penny hits the ground, h will = 0.
So: Set h(t) = 0 = -4.9t^2 + 0t + 150 m
Then 4.9t^2 = 150, and so t^2 = sqrt(150 / 4.9) = plus or minus 5.53 sec.
We can use only the positive root, as we're measuring time.
t = 5.5 sec (answer)
Answer:
<em>The answer is Hence Proved</em>
Step-by-step explanation:
Given that CB║ED , CB ≅ ED
To prove Δ CBF ≅ Δ EDF
This means that the length of CB is equal to ED
As CB║ED The following conditions satisfies when a transversal cut
two parallel lines
- ∠ EDF = ∠ FBC ( Alternate interior points )
- ∠ DEF = ∠ FCB ( Alternate interior points )
∴ Δ CBF ≅ Δ EDF ( By ASA criterion)
The Δ CBF is congruent to Δ EDF By ASA criterion .
<em> Hence proved </em>