Answer: The temperature and the number of molecules must reamain constant for the law to apply, and as the pressure increases, the volumen decreases proportionally.
Boyle's law states that if the temperature, T, of a given mass of gas, remains constant, the Volume, V, of the gas is in inverse relation to the pressure, p; i.e.
pV = constant (for a given mass of gas, at constant T)
Then, if p increases, V decreases proportionally to keep the relation pV = constant.
Increase in temperature of water = 0.53 °C
Explanation:
Change in mechanical energy = Potential energy
Potential energy = mgh
Mass, m = Mass of 1 L water = 1 kg
Acceleration due to gravity, g = 9.81 m/s²
Height, h = 225 m
Potential energy = 1 x 9.81 x 225 = 2207.25 J
Because of this 2207.25 J water gets heated.
Heat energy, E = mcΔT
Mass, m = Mass of 1 L water = 1 kg
Specific heat of water, c = 4200 J/kg/C
Energy, E = 2207.25 J
Change in temperature, ΔT = ?
Substituting
2207.25 = 1 x 4200 x ΔT
ΔT = 0.53 °C
Increase in temperature of water = 0.53 °C
Answer:
At a distance of 1376.49 candle emits 0.2 watt power
Explanation:
Distance between Sun and earth 
Sun emits a power of 
Power emitted by candle = 0.20 watt
We know that brightness is given by

So 



So at a distance of 1376.49 candle emits 0.2 watt power
I believe the correct answer is d. thermosphere.
Answer:
q = 1.815 \times 10^{-8} C
Charge on one plate is positive in nature and on the other plate it is negative in nature.
Explanation:
E = 8.20 x 10^5 V/m, A = 25 cm^2, d = 22.45 mm
According to the Gauss's theorem in electrostatics
The electric field between the two plates




Charge, q = surface charge density x area

q = 1.815 \times 10^{-8} C