1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lynna [10]
3 years ago
13

A vertical piston-cylinder device initially contains 0.1 m^3 of air at 400 K and 100 kPa. At this initial condition, the piston

is resting on a stop. The piston-cylinder device is connected to a supply line with air at 400 K and a pressure of 500 kPa. The valve between the supply line and the piston-cylinder device is opened and is left open until the pressure in the piston-cylinder device reaches 500 kPa. The piston is observed to start moving when the pressure in the cylinder is 200 kPa and the piston continues to rise until it reaches a second stop. At the second stop, the piston-cylinder volume is 0.2 m^3 . The final temperature and pressure in the piston-cylinder device are 440 K and 500 kPa, respectively. Determine the heat transfer to or from the piston-cylinder device for the filling process Determine heat transfer (kJ) during the entire process.
Physics
1 answer:
jenyasd209 [6]3 years ago
7 0

Answer:

Q=-38.15kJ

Explanation:

From the question we are told that

Piston-cylinder initial Volume of air v_1=0.1 m^3

Piston-cylinder initial temperature T_1=400k

Piston-cylinder initial pressure P_1= 100kpa

Supply line temperatureT_s=400k

Supply line pressure P_s= 500kpa

Valve  final pressure P_v=500kpa

Piston movement pressure P_m=200kpa

Piston-cylinder final Volume of airv_2=0.2 m^3

Piston-cylinder final temperature T_2=440k

Piston-cylinder final pressure P_2= 500kpa

Generally the  equation for conservation of mass is mathematically given by

Q=m_2 \mu_2-m_1 \mu_1 +W-(m_2-m_1)h

where

Initial moment

m_1=\frac{p_1 V_1}{RT_1}

m_1=\frac{100*0.1}{0.287*400}

m_1=8.7*10^-^2kg

Final moment

m_2=\frac{p_2 V_2}{RT_2}

m_1=\frac{500*0.3}{0.287*440}

m_1=79*10^{-2}kg

Work done by Piston movement pressure

W=Pd

W=P(v_2-v_1)

W=200(0.2-0.1))

W=20000J

Heat function

h=cT_1

h=1.005(400)

h=402

Therefore

Q=(0.792*0.718(440)-0.0871*0.718(400)+20-(0.792-0.087)*402))

Q=-38.15kJ

It is given mathematically that the system lost  or dissipated Heat of

Q=-38.15kJ

You might be interested in
The layer of leaves that blocks most of the sunlight from reaching the ground in the rain forest is called the _____.
love history [14]
The answer should be <span>canopy.</span>
4 0
3 years ago
Read 2 more answers
A 91-kg astronaut and a 1300-kg satellite are at rest relative to the space shuttle. The astronaut pushes on the satellite, givi
WARRIOR [948]

Answer:

18.2145 meters

Explanation:

Using the conservation of momentum, we have that:

m1v1 + m2v2 = m1'v1' + m2'v2'

m1 = m1' is the mass of the astronaut, m2=m2' is the mass of the satellite, v1 and v2 are the inicial speed of the astronaut and the satellite (v1 = v2 = 0), and v1' and v2' are the final speed of the astronaut and the satellite. Then we have that:

0 + 0 = 91*v1' + 1300*0.17

v1' = -1300*0.17/91 = -2.4286\ m/s

The negative sign of this speed just indicates the direction the astronaut goes, which is the opposite direction of the satellite.

If the astronaut takes 7.5 seconds to come into contact with the shuttle, their initial distance is:

distance = 2.4286 * 7.5 = 18.2145\ meters

8 0
4 years ago
Finally, you are ready to answer the main question. Cheetahs, the fastest of the great cats, can reach 50.0 miles/hour in 2.22 s
muminat

Answer:

Acceleration = 10.06 m/s²

Explanation:

1 mile = 1.6093km

1609.3m = 1 mile

1 m = \frac{1}{1609} mile

50.0 miles/hour = \frac{50 * 1609.3}{60 * 60} m/s

                          = 22.35m/s

from equation

S = Ut + 1/2 at²

v = U + at

22.35 = 0 + a * 2.22

a = 22.35 ÷ 2.22

= 10.06 m/s²

4 0
3 years ago
An elevator manufacturing company is stress-testing a new elevator in an airless test shaft. The elevator is traveling at an unk
devlian [24]

Answer:

3.192 m/s

Explanation:

t = Time taken = 0.900 seconds

u = Initial velocity

v = Final velocity

s = Displacement = 1.1 meters

a = Acceleration due to gravity = 9.81 m/s²

s=ut+\frac{1}{2}at^2\\\Rightarrow u=\frac{s-\frac{1}{2}at^2}{t}\\\Rightarrow u=\frac{1.1-\frac{1}{2}\times 9.81\times 0.9^2}{0.9}\\\Rightarrow u=-3.192\ m/s

Velocity of the elevator when it snapped is 3.192 m/s

4 0
3 years ago
A string of 26 identical Christmas tree lights are connected in series to a 120 V source. The string dissipates 73 W. What is th
spin [16.1K]

To solve this problem we will apply the concepts related to Ohm's law and Electric Power. By Ohm's law we know that resistance is equivalent to,

R_{eq}= \frac{V}{I}

Here,

V = Voltage

I = Current

While the power is equivalent to the product between the current and the voltage, thus solving for the current we have,

P=VI \rightarrow I = \frac{P}{V}

I =0.608 A

Applying Ohm's law

R_{eq} = \frac{120V}{0.608A}

R_{eq} = 197.4\Omega

Therefore the equivalent resistance of the light string is 197.4\Omega

6 0
3 years ago
Other questions:
  • Letícia leaves the grocery store and walks 150.0 m to the parking lot. Then, she turns 90° to the right and walks an additional
    15·2 answers
  • Which is not a benefit of power in sport?
    15·1 answer
  • Assuming that 70 percent of the Earth’s surface
    14·1 answer
  • A 15-kN tensile load will be applied to a 50-m length of steel wire with E = 200 GPa. Determine the smallest diameter wire that
    8·1 answer
  • A straight 2.20 m wire carries a typical household current of 1.50 A (in one direction) at a location where the earth's magnetic
    11·1 answer
  • A tennis racket hits a tennis ball with a force of F=at−bt2, where a = 1200 N/ms , b = 370 N/ms2 , and t is the time (in millise
    5·1 answer
  • Define , gravitational acceleration
    15·1 answer
  • You have a working electrical parallel circuit with three light bulbs, then 1 bulb burns
    15·1 answer
  • PLEASE ANSWER ASAP BEFORE MY TEACHER AND MY MOM KILLES ME PLEASE ASAP
    12·2 answers
  • light with a wavelength of 415 nm illuminates a metal cathode. the maximum kinetic energy of the emitted electrons is 0.61 ev .
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!