1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Deffense [45]
3 years ago
9

A ball on a frictionless plane is swung around in a circle at constant speed. The acceleration points in the same direction as t

he velocity vector.
a. True
b. False
Physics
2 answers:
emmainna [20.7K]3 years ago
8 0

Answer:

False

Explanation:

You have a circle so think back to circular motion. Theres 2 directions, centripetal and tangential. The problem tells you there's a constant tangential speed so tangential acceleration is 0. However there is a centripetal acceleration acting on the ball that holds it in its circular motion (i.e. tension, or gravity). Since centripetal is perpendicular to the tangential direction, acceleration and velocity are in different directions.

Kitty [74]3 years ago
4 0
I believe it is False, only because the plane is Frictionless. Hope this helps, good luck.
You might be interested in
This is my exam question be serious
elena-s [515]

Answer:

hey answer in the comment section

6 0
3 years ago
A bicycle travels 15 km in 30 minutes. What it's is average speed in km per hour
Anestetic [448]
Average speed is 0.5 km per hour
4 0
3 years ago
Read 2 more answers
Class II levers like ankles and wheelbarrows are useful because they provide mechanical advantage, by amplifying the input force
marusya05 [52]

Answer:

The solution and the explanation are in the Explanation section.

Explanation:

According to the diagram that is in the attached image, the EFFORT force at point A and the load is at O point. The torque due to weight is:

TA = W * (a * cosθ)

The torque due to effort at C point is:

TC = E * (b * cosθ)

The net torque is equal to 0, we have:

Tnet = 0

W * (a * cosθ) - E * (b * cosθ) = 0

E=W\frac{a}{b}

From the figure, you can observe that a/b < 1, thus E < W

8 0
3 years ago
A bag of cement has a mass of 62 g. What is the mass of the bag of cement in S.I. units (kg)?
NNADVOKAT [17]

The mass of this bag of cement in S.I. units (kg) is equal to 0.062 kilograms.

<u>Given the following data:</u>

  • Mass of cement = 62 grams.

To calculate the mass of this bag of cement in S.I. units (kg):

<h3>How to convert to S.I. units.</h3>

In Science, kilograms (kg) is the standard unit of measurement or S.I. units of the mass of a physical object. Thus, we would convert the value of the mass of this bag of cement in grams to kilograms (kg) as follows:

<u>Conversion:</u>

1000 grams = 1 kilograms.

62 grams = X kilograms.

Cross-multiplying, we have:

X = \frac{62}{1000}

X = 0.062 kilograms.

Read more on mass here: brainly.com/question/13833323

8 0
2 years ago
A flat, circular, steel loop of radius 75 cm is at rest in a uniform magnetic field, as shown in an edge-on view in the figure (
SIZIF [17.4K]

The solution to the questions are given as

  • t=40.39 \mathrm{sec}
  • \varepsilon &=(0.12v)e^{0.057t}
  • the direction of induced current will be Counterclock vise.

<h3>What is the direction of the current induced in the loop, as viewed from above the loop.?</h3>

Given, $B(t)=(1.4 T) e^{-0.057 t}$

$\varepsilon m f(\varepsilon)=-\frac{d \phi_{B}}{d t}

\quad$ and, $\phi_{B}=\int B \cdot d A=\int B \cdot d A \cdot \cos \theta$

\begin{aligned}\text { Here, } \theta &=30^{\circ} ; \\A &=\pi r^{2} \\a n \delta, R &=0.75 \mathrm{~m} \\\therefore \varepsilon &=-\frac{d}{d t}(B A \cdot \cos \theta)=-A \cdot \cos \theta \cdot \frac{d}{d t}(B(t)) \\\therefore \varepsilon &=-\pi R^{2} \cdot \cos \theta \cdot \frac{d}{d t}\left(e^{-0.057 t}\right)(1.4 T) \\\therefore \varepsilon &=+\pi(0.75)^{2} \cdot \cos 30 \cdot(0.057)(1.4) \cdot e^{-0.057 t}\left\{\because \frac{d}{d t} e^{-x}=-x \cdot e^{-x} .\right.\end{aligned}

\varepsilon &=(0.12v)e^{0.057t}

(b) Here, $\varepsilon_{0}=0.12 \mathrm{~V} \quad\left(a t_{2} t=0 \mathrm{sec}\right)$

\begin{aligned}&\therefore 1 . \varepsilon_{0}=\varepsilon_{0} \cdot e^{-e .057 t} \\&\therefore e^{0.057 t}=10 \quad \text { (taking log both thesides) } \\&\therefore 0.057 t=\ln (10)=2.303 \\&\therefore t=40.39 \mathrm{sec}\end{aligned}

c)

In conclusion, the direction of the induced current will be Counterclockwise.

Read more about current

brainly.com/question/13076734

#SPJ1

4 0
2 years ago
Other questions:
  • A book with mass 2.3 kg sits on a table. What is the normal force on the
    8·2 answers
  • Which of the following is not an intensive physical property?
    12·2 answers
  • The wavelength range of colors visible to humans ranges from 350 nm to 750 nm. light that most of us perceive as ________ is at
    6·1 answer
  • The famous clock tower in London has a minute hand that is 14 feet long. How far does the tip of the minute hand of Big Ben trav
    7·2 answers
  • Which property of gases best explains the ability of air bags to cushion the force of impact during a car accident?
    10·1 answer
  • Provide the answers to the following questions.
    7·1 answer
  • Heat transfer occurs only in 1 case from body II to body I, 2. Heat transfer occurs only in 2 cases from body I to body II, 3. H
    13·1 answer
  • How do low energy electromagnetic waves compare with high energy electromagnetic waves? Select all
    6·1 answer
  • How does static electricity apply to car<br> paint application?
    8·1 answer
  • car starts from rest and reaches a velocity of 10 m/s in 10s a) Draw the v against t graph for the motion of the car? b) From th
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!