134.5 grams in 4.5 moles of Li2O (lithium oxide).
Answer:
37.8g/ 10.81g/mol = 3.4968...moles
The skeletal structure of an organic compound is an abbreviated representation of its molecular structure, they are quick and easy to draw.
For example, the following image shows the skeletal structure of a compound:
The peaks represent the carbons. We must remember that carbon can have a maximum of 4 bonds.
Now, I will show you how is the structure of this specific compound:
This is ternary alcohol, called 2-methyl-2-butanol. If you see carefully, you will notice that each carbon has 4 bonds. The functional groups present will be OH. The skeletal structure will be:
Answer: 404.04 kJ.
Explanation:
To calculate the moles, we use the equation:
moles of

According to stoichiometry :
2 moles of
on burning produces = 1036 kJ
Thus 0.78 moles of
on burning produces =
Thus the enthalpy change when burning 26.7 g of hydrogen sulfide is 404.04 kJ.
Answer:
The atomic mass of the boron atom would be <em>10.135</em>
Explanation:
This is generally known as relative atomic mass.
Relative atomic mass or atomic weight is a physical quantity defined as the ratio of the average mass of atoms of a chemical element in a given sample to the atomic mass of 1/12 of the mass of a carbon-12 atom. Since both quantities in the ratio are masses, the resulting value is dimensionless; hence the value is said to be relative and does not have a unit.
<em>Note that the relative atomic mass of atoms is not always a whole number because of it being isotopic in nature.</em>
- <em>Divide each abundance by 100 then multiply by atomic mass</em>
- <em>Do that for each isotope, then add the two result. Thus</em>
Relative atomic mass of Boron = (18.5/100 x 11) + (81/100 x 10)
= 2.035 + 8.1
= 10.135