Answer:
Explanation:
Not Many
1 mol of CO has a mass of
C = 12
O = 16
1 mol = 28 grams.
1 mol of molecules = 6.02 * 10^23
x mol of molecules = 3.14 * 10^15 Cross multiply
6.02*10^23 x = 1 * 3.14 * 10^15 Divide by 6.02*10^23
x = 3.14*10^15 / 6.02*10^23
x = 0.000000005 mols
x = 5*10^-9
1 mol of CO has a mass of 28
5*10^-9 mol of CO has a mass of x Cross Multiply
x = 5 * 10^-9 * 28
x = 1.46 * 10^-7 grams
Answer: there are 1.46 * 10-7 grams of CO if only 3.14 * 10^15 molecules are in the sample
Answer:
A. an equal and opposite reaction force
Explanation:
This means that there is a natural reaction of force
Answer:
3NaOH (aq) + Fe(NO₃)₃ (aq) → Fe(OH)₃ (s) + 3NaNO₃ (aq)
Explanation:
Step 1: RxN
NaOH (aq) + Fe(NO₃)₃ (aq) → Fe(OH)₃ (s) + NaNO₃ (aq)
Step 2: Balance RxN
We need 3 OH's on both sides.
We also need 3 NO₃'s on both side.
- This will make it so we also need 3 Na's on both side
3NaOH (aq) + Fe(NO₃)₃ (aq) → Fe(OH)₃ (s) + 3NaNO₃ (aq)
It goes Meter mega meter giga meter and kilometer
Answer:
a) rate law1 = k[NO2]²
b) rate law2 = k[NO][O3]
Explanation:
NO2(g) + CO(g) → NO(g) + CO2(g)
NO(g) + O3(g) → NO2(g) + O2(g)
When [NO2] in reaction 1 is doubled, the reaction quadruples
Rxn is second order.
rate law1= [NO2]^a [CO]^b
rate law1= [NO2]² [CO]^0
rate law1 = k[NO2]²
When [NO] in reaction 2 is doubled, the rate doubles.
Rxn is first order
The ratio is 1:1
this makes the rate law2 = k[NO][O3]