Answer:
<h2>95.5 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>95.5 moles to 3 sig. figures</h3>
Hope this helps you
Answer:
For the tetrahedral case the repulsion is smaller.
Explanation:
It is smaller for the tetrahedral case because he angles for tetrahedral molecules are greater (109.5) then for octahedral molecules (90). The greater the distance between the atoms the smaller the repulsion, and so the bigger are angles the bigger is distance.
The balanced reaction would be:<span>
C12H22O11 + 12O2 = 12CO2 + 11H2O
We are given the amount of oxygen used in the combustion. This will be the starting point of our calculation. We use the ideal gas equation to find for the number of moles.
n = PV / RT = 1.00(250 L) / (0.08206 atm L/mol K ) 273 K
n= 11.16 mol O2
</span>11.16 mol O2<span> (12 mol CO2 / 12 mol O2) = 11.16 mol CO2
V = nRT/P =</span>11.16 mol CO2<span> x 273 K x 0.08206 atm L/mol K / 1 atm
V=250 L</span>