Answer:
The temperature remains constant because the internal energy only depends on temperature in that case
-Hops
Answer:
OptionA. 2C4H10 + 13O2 —> 8CO2 + 10H20
Explanation:
Butane burns is air (O2) according to the equation:
C4H10 + O2 —> CO2 + H20
Considering the equation, it is evident that it not balanced. Now let us balance the equation as shown below;
There are a total of 4 carbon atoms on the left and 1 carbon atom on the right. It can be balanced by putting 4 in front of CO2 as shown below:
C4H10 + O2 —> 4CO2 + H20
Next, there are 10 hydrogen atoms on the left and 2 hydrogen atoms on the right. Therefore to balance it, put 5 in front of H2O as shown below:
C4H10 + O2 —> 4CO2 + 5H20
Now, there are a total of 13 oxygen atoms on the right and 2 at the left. To balance it, put 13/2 in front of O2
as shown below
C4H10 + 13/2O2 —> 4CO2 + 5H20
Now we multiply through by 2 clear off the fraction and we obtained:
2C4H10 + 13O2 —> 8CO2 + 10H20
Cool whats the question ma dude?
Answer:
0,218 moles
Explanation:
I will first explain how many liters is 256ml, that is 0,256 l.
because the m stands for milli which is a factor of 1000 -> (256 ml / 1000 = 0,256 l)
To calculate the amount of moles you multiply the volume with the concentration. So 0,256l x 0,855M = 0,218 moles.
After thorough researching, the Keq for the reaction N2 + 3H2 2NH3 if the equilibrium concentrations are [NH3] = .250 M, [N2] = .590 M, and [H2] = .750 M is 1.33. The correct answer to the following given statement above is 1.33