Answer:
Velocity, quantity that designates how fast and in what direction a point is moving.
Explanation:
Calculate the pressure due to sea water as density*depth.
That is,
pressure = (1025 kg/m^3)*((9400 m)*(9.8 m/s^2) = 94423000 Pa = 94423 kPa
Atmospheric pressure is 101.3 kPa
Total pressure is 94423 + 101.3 = 94524 kPa (approx)
The area of the window is π(0.44 m)^2 = 0.6082 m^2
The force on the window is
(94524 kPa)*(0.6082 m^2) = 57489.7 kN = 57.5 MN approx
Answer:
16.9000000000000001 J
Explanation:
From the given information:
Let the initial kinetic energy from point A be
= 1.9000000000000001 J
and the final kinetic energy from point B be
= ???
The charge particle Q = 6 mC = 6 × 10⁻³ C
The change in the electric potential from point B to A;
i.e. V_B - V_A = -2.5 × 10³ V
According to the work-energy theorem:
-Q × ΔV = ΔK





Answer:
See answers below
Explanation:
a.
F = mg,
15.5 N = m(9.8 m/s²)
m = 1.58 kg
b.
Fnet = Applied force - resistance,
Fnet = 18 N - 4.30 N,
Fnet = 13.70 N
Fnet = ma
13.70 N = (1.58 kg)a
a = 8.67 m/s²
For the free body diagram, draw a box with an upward arrow labeled 15.5 N, a downward label labeled 15.5 N, a right label labeled 18 N, and a left label labeled 4.30 N.
Tension in the rope due to applied force will be given as

angle of applied force with horizontal is 37 degree
displacement along the floor = 6.1 m
so here we can use the formula of work done

now we can plug in all values above


So here work done to pull is given by 691.8 J