Answer:
36 N
Explanation:
Velocity of a standing wave in a stretched string is:
v = √(T/ρ),
where T is the tension and ρ is the mass per unit length.
300 m/s = √(T / 4×10⁻⁴ kg/m)
T = 36 N
Answer:
7.65x10^3 m/s
Explanation:
The computation of the satellite's orbital speed is shown below:
Given that
Earth mass, M_e = 5.97 × 10^24 kg
Gravitational constant, G = 6.67 × 10^-11 N·m^2/kg
Orbital radius, r = 6.80 × 10^6m
Based on the above information
the satellite's orbital speed is
V_o = √GM_e ÷ √r
= √6.67 × 10^-11 × 5.97 × 10^24 ÷ √6.80 × 10^6
= 7.65x10^3 m/s
Basically, when someone is resting in an accelerated vehicle without restraint from a seatbelt, the force of stopping the vehicle will be when inertia occurs, and that force of the vehicle coming to a stop will affect the passenger (without a seatbelt/restraint from another force or object) greatly by throwing them.
For example;
If I were to be riding in a vehicle (without a seatbelt) that's accelerating at 40 m/s^2 and it suddenly gets slammed on the breaks, I will be thrown forward from inside the vehicle.
I hope this helps!
The common value for “Speed of light in vacuum” is
metre per second.
Answer: Option b
<u>Solution:
</u>
Speed of light can be defined as the speed with which light waves propagate in different medium. In vacuum, speed of light is 186,282 miles per second or 299,792 km/s which is rounded off as
.
“Speed of light in vacuum” is a universal constant and usually represented by ‘c’. Light waves travels at a speed of
metre per second in vacuum.