Check the picture below.
so the shape is really 4 triangles with a base of 2 and a height of 4 each, and 2 squares tha are 4x4.
![\bf \stackrel{\textit{area of the 4 triangles}}{4\left[\cfrac{1}{2}(2)(4) \right]}~~+~~\stackrel{\textit{area of the two squares}}{2(4\cdot 4)}\implies 16+32\implies 48](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20the%204%20triangles%7D%7D%7B4%5Cleft%5B%5Ccfrac%7B1%7D%7B2%7D%282%29%284%29%20%5Cright%5D%7D~~%2B~~%5Cstackrel%7B%5Ctextit%7Barea%20of%20the%20two%20squares%7D%7D%7B2%284%5Ccdot%204%29%7D%5Cimplies%2016%2B32%5Cimplies%2048)
4.5 because 1/2 equals .5 and 4 equals for
Answer:

Step-by-step explanation:
Answer:
The 99% confidence interval for the population mean reduction in anxiety was (1.2, 8.6).
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 27 - 1 = 26
99% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 26 degrees of freedom(y-axis) and a confidence level of
. So we have T = 2.7787.
The margin of error is:

In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 4.9 - 3.7 = 1.2.
The upper end of the interval is the sample mean added to M. So it is 4.9 + 3.7 = 8.6.
The 99% confidence interval for the population mean reduction in anxiety was (1.2, 8.6).
Answer:
98 ft
Step-by-step explanation:
14x7
=98 ft